Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoel0 Structured version   Visualization version   Unicode version

Theorem lcoel0 42217
Description: The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoel0  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  ( 0g `  M )  e.  ( M LinCo  V ) )

Proof of Theorem lcoel0
Dummy variables  s 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . 4  |-  ( 0g
`  M )  e. 
_V
21snid 4208 . . 3  |-  ( 0g
`  M )  e. 
{ ( 0g `  M ) }
3 oveq2 6658 . . . 4  |-  ( V  =  (/)  ->  ( M LinCo 
V )  =  ( M LinCo  (/) ) )
4 lmodgrp 18870 . . . . . 6  |-  ( M  e.  LMod  ->  M  e. 
Grp )
5 grpmnd 17429 . . . . . 6  |-  ( M  e.  Grp  ->  M  e.  Mnd )
6 lco0 42216 . . . . . 6  |-  ( M  e.  Mnd  ->  ( M LinCo 
(/) )  =  {
( 0g `  M
) } )
74, 5, 63syl 18 . . . . 5  |-  ( M  e.  LMod  ->  ( M LinCo  (/) )  =  { ( 0g `  M ) } )
87adantr 481 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  ( M LinCo 
(/) )  =  {
( 0g `  M
) } )
93, 8sylan9eq 2676 . . 3  |-  ( ( V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) ) )  -> 
( M LinCo  V )  =  { ( 0g `  M ) } )
102, 9syl5eleqr 2708 . 2  |-  ( ( V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) ) )  -> 
( 0g `  M
)  e.  ( M LinCo 
V ) )
11 eqid 2622 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
12 eqid 2622 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
1311, 12lmod0vcl 18892 . . . . 5  |-  ( M  e.  LMod  ->  ( 0g
`  M )  e.  ( Base `  M
) )
1413adantr 481 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  ( 0g `  M )  e.  ( Base `  M
) )
1514adantl 482 . . 3  |-  ( ( -.  V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) ) )  ->  ( 0g `  M )  e.  (
Base `  M )
)
16 eqid 2622 . . . . . 6  |-  (Scalar `  M )  =  (Scalar `  M )
17 eqid 2622 . . . . . 6  |-  ( 0g
`  (Scalar `  M )
)  =  ( 0g
`  (Scalar `  M )
)
18 eqidd 2623 . . . . . . 7  |-  ( v  =  w  ->  ( 0g `  (Scalar `  M
) )  =  ( 0g `  (Scalar `  M ) ) )
1918cbvmptv 4750 . . . . . 6  |-  ( v  e.  V  |->  ( 0g
`  (Scalar `  M )
) )  =  ( w  e.  V  |->  ( 0g `  (Scalar `  M ) ) )
20 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
2111, 16, 17, 12, 19, 20lcoc0 42211 . . . . 5  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  (
( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  /\  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) finSupp 
( 0g `  (Scalar `  M ) )  /\  ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M
) V )  =  ( 0g `  M
) ) )
2221adantl 482 . . . 4  |-  ( ( -.  V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) ) )  ->  ( (
v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  /\  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) finSupp 
( 0g `  (Scalar `  M ) )  /\  ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M
) V )  =  ( 0g `  M
) ) )
23 simpl 473 . . . . . . . 8  |-  ( ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  /\  ( -.  V  =  (/)  /\  ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
) ) )  -> 
( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )
)
24 breq1 4656 . . . . . . . . . 10  |-  ( s  =  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  ->  ( s finSupp  ( 0g `  (Scalar `  M ) )  <->  ( v  e.  V  |->  ( 0g
`  (Scalar `  M )
) ) finSupp  ( 0g `  (Scalar `  M )
) ) )
25 oveq1 6657 . . . . . . . . . . . 12  |-  ( s  =  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  ->  ( s
( linC  `  M ) V )  =  ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M ) V ) )
2625eqeq2d 2632 . . . . . . . . . . 11  |-  ( s  =  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  ->  ( ( 0g `  M )  =  ( s ( linC  `  M ) V )  <-> 
( 0g `  M
)  =  ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M ) V ) ) )
27 eqcom 2629 . . . . . . . . . . 11  |-  ( ( 0g `  M )  =  ( ( v  e.  V  |->  ( 0g
`  (Scalar `  M )
) ) ( linC  `  M ) V )  <-> 
( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M
) V )  =  ( 0g `  M
) )
2826, 27syl6bb 276 . . . . . . . . . 10  |-  ( s  =  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  ->  ( ( 0g `  M )  =  ( s ( linC  `  M ) V )  <-> 
( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M
) V )  =  ( 0g `  M
) ) )
2924, 28anbi12d 747 . . . . . . . . 9  |-  ( s  =  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  ->  ( (
s finSupp  ( 0g `  (Scalar `  M ) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) )  <->  ( ( v  e.  V  |->  ( 0g
`  (Scalar `  M )
) ) finSupp  ( 0g `  (Scalar `  M )
)  /\  ( (
v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M ) V )  =  ( 0g `  M ) ) ) )
3029adantl 482 . . . . . . . 8  |-  ( ( ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( (
Base `  (Scalar `  M
) )  ^m  V
)  /\  ( -.  V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) ) ) )  /\  s  =  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) )  ->  ( (
s finSupp  ( 0g `  (Scalar `  M ) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) )  <->  ( ( v  e.  V  |->  ( 0g
`  (Scalar `  M )
) ) finSupp  ( 0g `  (Scalar `  M )
)  /\  ( (
v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M ) V )  =  ( 0g `  M ) ) ) )
3123, 30rspcedv 3313 . . . . . . 7  |-  ( ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  /\  ( -.  V  =  (/)  /\  ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
) ) )  -> 
( ( ( v  e.  V  |->  ( 0g
`  (Scalar `  M )
) ) finSupp  ( 0g `  (Scalar `  M )
)  /\  ( (
v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M ) V )  =  ( 0g `  M ) )  ->  E. s  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( s finSupp 
( 0g `  (Scalar `  M ) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) ) ) )
3231ex 450 . . . . . 6  |-  ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  ->  ( ( -.  V  =  (/)  /\  ( M  e.  LMod  /\  V  e. 
~P ( Base `  M
) ) )  -> 
( ( ( v  e.  V  |->  ( 0g
`  (Scalar `  M )
) ) finSupp  ( 0g `  (Scalar `  M )
)  /\  ( (
v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M ) V )  =  ( 0g `  M ) )  ->  E. s  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( s finSupp 
( 0g `  (Scalar `  M ) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) ) ) ) )
3332com23 86 . . . . 5  |-  ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  ->  ( ( ( v  e.  V  |->  ( 0g
`  (Scalar `  M )
) ) finSupp  ( 0g `  (Scalar `  M )
)  /\  ( (
v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M ) V )  =  ( 0g `  M ) )  ->  ( ( -.  V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) ) )  ->  E. s  e.  (
( Base `  (Scalar `  M
) )  ^m  V
) ( s finSupp  ( 0g `  (Scalar `  M
) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) ) ) ) )
34333impib 1262 . . . 4  |-  ( ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )  /\  ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) finSupp 
( 0g `  (Scalar `  M ) )  /\  ( ( v  e.  V  |->  ( 0g `  (Scalar `  M ) ) ) ( linC  `  M
) V )  =  ( 0g `  M
) )  ->  (
( -.  V  =  (/)  /\  ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
) )  ->  E. s  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( s finSupp 
( 0g `  (Scalar `  M ) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) ) ) )
3522, 34mpcom 38 . . 3  |-  ( ( -.  V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) ) )  ->  E. s  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( s finSupp 
( 0g `  (Scalar `  M ) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) ) )
3611, 16, 20lcoval 42201 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  (
( 0g `  M
)  e.  ( M LinCo 
V )  <->  ( ( 0g `  M )  e.  ( Base `  M
)  /\  E. s  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( s finSupp 
( 0g `  (Scalar `  M ) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) ) ) ) )
3736adantl 482 . . 3  |-  ( ( -.  V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) ) )  ->  ( ( 0g `  M )  e.  ( M LinCo  V )  <-> 
( ( 0g `  M )  e.  (
Base `  M )  /\  E. s  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) ( s finSupp 
( 0g `  (Scalar `  M ) )  /\  ( 0g `  M )  =  ( s ( linC  `  M ) V ) ) ) ) )
3815, 35, 37mpbir2and 957 . 2  |-  ( ( -.  V  =  (/)  /\  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) ) )  ->  ( 0g `  M )  e.  ( M LinCo  V ) )
3910, 38pm2.61ian 831 1  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  ( 0g `  M )  e.  ( M LinCo  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   Mndcmnd 17294   Grpcgrp 17422   LModclmod 18863   linC clinc 42193   LinCo clinco 42194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-map 7859  df-en 7956  df-fin 7959  df-fsupp 8276  df-seq 12802  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ring 18549  df-lmod 18865  df-linc 42195  df-lco 42196
This theorem is referenced by:  lincolss  42223
  Copyright terms: Public domain W3C validator