Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupval3 Structured version   Visualization version   Unicode version

Theorem limsupval3 39924
Description: The superior limit of an infinite sequence  F of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupval3.1  |-  F/ k
ph
limsupval3.2  |-  ( ph  ->  A  e.  V )
limsupval3.3  |-  ( ph  ->  F : A --> RR* )
limsupval3.4  |-  G  =  ( k  e.  RR  |->  sup ( ( F "
( k [,) +oo ) ) ,  RR* ,  <  ) )
Assertion
Ref Expression
limsupval3  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  G ,  RR* ,  <  ) )
Distinct variable group:    k, F
Allowed substitution hints:    ph( k)    A( k)    G( k)    V( k)

Proof of Theorem limsupval3
StepHypRef Expression
1 limsupval3.3 . . . 4  |-  ( ph  ->  F : A --> RR* )
2 limsupval3.2 . . . 4  |-  ( ph  ->  A  e.  V )
31, 2fexd 39296 . . 3  |-  ( ph  ->  F  e.  _V )
4 eqid 2622 . . . 4  |-  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54limsupval 14205 . . 3  |-  ( F  e.  _V  ->  ( limsup `
 F )  = inf ( ran  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
63, 5syl 17 . 2  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
7 limsupval3.4 . . . . . 6  |-  G  =  ( k  e.  RR  |->  sup ( ( F "
( k [,) +oo ) ) ,  RR* ,  <  ) )
87a1i 11 . . . . 5  |-  ( ph  ->  G  =  ( k  e.  RR  |->  sup (
( F " (
k [,) +oo )
) ,  RR* ,  <  ) ) )
9 limsupval3.1 . . . . . 6  |-  F/ k
ph
101fimassd 39432 . . . . . . . . . 10  |-  ( ph  ->  ( F " (
k [,) +oo )
)  C_  RR* )
11 df-ss 3588 . . . . . . . . . 10  |-  ( ( F " ( k [,) +oo ) ) 
C_  RR*  <->  ( ( F
" ( k [,) +oo ) )  i^i  RR* )  =  ( F " ( k [,) +oo ) ) )
1210, 11sylib 208 . . . . . . . . 9  |-  ( ph  ->  ( ( F "
( k [,) +oo ) )  i^i  RR* )  =  ( F " ( k [,) +oo ) ) )
1312eqcomd 2628 . . . . . . . 8  |-  ( ph  ->  ( F " (
k [,) +oo )
)  =  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )
1413supeq1d 8352 . . . . . . 7  |-  ( ph  ->  sup ( ( F
" ( k [,) +oo ) ) ,  RR* ,  <  )  =  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
1514adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  RR )  ->  sup (
( F " (
k [,) +oo )
) ,  RR* ,  <  )  =  sup ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
169, 15mpteq2da 4743 . . . . 5  |-  ( ph  ->  ( k  e.  RR  |->  sup ( ( F "
( k [,) +oo ) ) ,  RR* ,  <  ) )  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
178, 16eqtr2d 2657 . . . 4  |-  ( ph  ->  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  G )
1817rneqd 5353 . . 3  |-  ( ph  ->  ran  ( k  e.  RR  |->  sup ( ( ( F " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ran  G )
1918infeq1d 8383 . 2  |-  ( ph  -> inf ( ran  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  = inf ( ran  G ,  RR* ,  <  )
)
206, 19eqtrd 2656 1  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  G ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   F/wnf 1708    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,)cico 12177   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-limsup 14202
This theorem is referenced by:  limsupmnflem  39952  limsup10ex  40005
  Copyright terms: Public domain W3C validator