MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval Structured version   Visualization version   Unicode version

Theorem limsupval 14205
Description: The superior limit of an infinite sequence  F of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of  F. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2014.)
Hypothesis
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
Assertion
Ref Expression
limsupval  |-  ( F  e.  V  ->  ( limsup `
 F )  = inf ( ran  G ,  RR* ,  <  ) )
Distinct variable group:    k, F
Allowed substitution hints:    G( k)    V( k)

Proof of Theorem limsupval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( F  e.  V  ->  F  e.  _V )
2 imaeq1 5461 . . . . . . . . 9  |-  ( x  =  F  ->  (
x " ( k [,) +oo ) )  =  ( F "
( k [,) +oo ) ) )
32ineq1d 3813 . . . . . . . 8  |-  ( x  =  F  ->  (
( x " (
k [,) +oo )
)  i^i  RR* )  =  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )
43supeq1d 8352 . . . . . . 7  |-  ( x  =  F  ->  sup ( ( ( x
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
54mpteq2dv 4745 . . . . . 6  |-  ( x  =  F  ->  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
6 limsupval.1 . . . . . 6  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
75, 6syl6eqr 2674 . . . . 5  |-  ( x  =  F  ->  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  G )
87rneqd 5353 . . . 4  |-  ( x  =  F  ->  ran  ( k  e.  RR  |->  sup ( ( ( x
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ran  G
)
98infeq1d 8383 . . 3  |-  ( x  =  F  -> inf ( ran  ( k  e.  RR  |->  sup ( ( ( x
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  )  = inf ( ran  G ,  RR* ,  <  )
)
10 df-limsup 14202 . . 3  |-  limsup  =  ( x  e.  _V  |-> inf ( ran  ( k  e.  RR  |->  sup ( ( ( x " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) , 
RR* ,  <  ) )
11 xrltso 11974 . . . 4  |-  <  Or  RR*
1211infex 8399 . . 3  |- inf ( ran 
G ,  RR* ,  <  )  e.  _V
139, 10, 12fvmpt 6282 . 2  |-  ( F  e.  _V  ->  ( limsup `
 F )  = inf ( ran  G ,  RR* ,  <  ) )
141, 13syl 17 1  |-  ( F  e.  V  ->  ( limsup `
 F )  = inf ( ran  G ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    |-> cmpt 4729   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,)cico 12177   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-limsup 14202
This theorem is referenced by:  limsuple  14209  limsupval2  14211  limsupval3  39924  limsup0  39926  limsupresre  39928  limsuplesup  39931  limsuppnfdlem  39933  limsupres  39937  limsupvald  39987  limsupresxr  39998  liminfvalxr  40015
  Copyright terms: Public domain W3C validator