Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsc0 Structured version   Visualization version   Unicode version

Theorem lincvalsc0 42210
Description: The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.)
Hypotheses
Ref Expression
lincvalsc0.b  |-  B  =  ( Base `  M
)
lincvalsc0.s  |-  S  =  (Scalar `  M )
lincvalsc0.0  |-  .0.  =  ( 0g `  S )
lincvalsc0.z  |-  Z  =  ( 0g `  M
)
lincvalsc0.f  |-  F  =  ( x  e.  V  |->  .0.  )
Assertion
Ref Expression
lincvalsc0  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F ( linC  `  M ) V )  =  Z )
Distinct variable groups:    x, B    x, M    x, V    x,  .0.
Allowed substitution hints:    S( x)    F( x)    Z( x)

Proof of Theorem lincvalsc0
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  M  e.  LMod )
2 lincvalsc0.s . . . . . . . 8  |-  S  =  (Scalar `  M )
32eqcomi 2631 . . . . . . . . 9  |-  (Scalar `  M )  =  S
43fveq2i 6194 . . . . . . . 8  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  S )
5 lincvalsc0.0 . . . . . . . 8  |-  .0.  =  ( 0g `  S )
62, 4, 5lmod0cl 18889 . . . . . . 7  |-  ( M  e.  LMod  ->  .0.  e.  ( Base `  (Scalar `  M
) ) )
76adantr 481 . . . . . 6  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  .0.  e.  ( Base `  (Scalar `  M ) ) )
87adantr 481 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  x  e.  V )  ->  .0.  e.  ( Base `  (Scalar `  M ) ) )
9 lincvalsc0.f . . . . 5  |-  F  =  ( x  e.  V  |->  .0.  )
108, 9fmptd 6385 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  F : V --> ( Base `  (Scalar `  M )
) )
11 fvexd 6203 . . . . 5  |-  ( M  e.  LMod  ->  ( Base `  (Scalar `  M )
)  e.  _V )
12 elmapg 7870 . . . . 5  |-  ( ( ( Base `  (Scalar `  M ) )  e. 
_V  /\  V  e.  ~P B )  ->  ( F  e.  ( ( Base `  (Scalar `  M
) )  ^m  V
)  <->  F : V --> ( Base `  (Scalar `  M )
) ) )
1311, 12sylan 488 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  <->  F : V
--> ( Base `  (Scalar `  M ) ) ) )
1410, 13mpbird 247 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  F  e.  ( ( Base `  (Scalar `  M
) )  ^m  V
) )
15 lincvalsc0.b . . . . . . 7  |-  B  =  ( Base `  M
)
1615pweqi 4162 . . . . . 6  |-  ~P B  =  ~P ( Base `  M
)
1716eleq2i 2693 . . . . 5  |-  ( V  e.  ~P B  <->  V  e.  ~P ( Base `  M
) )
1817biimpi 206 . . . 4  |-  ( V  e.  ~P B  ->  V  e.  ~P ( Base `  M ) )
1918adantl 482 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  ->  V  e.  ~P ( Base `  M ) )
20 lincval 42198 . . 3  |-  ( ( M  e.  LMod  /\  F  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  /\  V  e.  ~P ( Base `  M
) )  ->  ( F ( linC  `  M ) V )  =  ( M  gsumg  ( v  e.  V  |->  ( ( F `  v ) ( .s
`  M ) v ) ) ) )
211, 14, 19, 20syl3anc 1326 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F ( linC  `  M ) V )  =  ( M  gsumg  ( v  e.  V  |->  ( ( F `  v ) ( .s `  M
) v ) ) ) )
22 simpr 477 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  v  e.  V )
23 fvex 6201 . . . . . . . 8  |-  ( 0g
`  S )  e. 
_V
245, 23eqeltri 2697 . . . . . . 7  |-  .0.  e.  _V
25 eqidd 2623 . . . . . . . 8  |-  ( x  =  v  ->  .0.  =  .0.  )
2625, 9fvmptg 6280 . . . . . . 7  |-  ( ( v  e.  V  /\  .0.  e.  _V )  -> 
( F `  v
)  =  .0.  )
2722, 24, 26sylancl 694 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  ( F `  v )  =  .0.  )
2827oveq1d 6665 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  (
( F `  v
) ( .s `  M ) v )  =  (  .0.  ( .s `  M ) v ) )
291adantr 481 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  M  e.  LMod )
30 elelpwi 4171 . . . . . . . . 9  |-  ( ( v  e.  V  /\  V  e.  ~P B
)  ->  v  e.  B )
3130expcom 451 . . . . . . . 8  |-  ( V  e.  ~P B  -> 
( v  e.  V  ->  v  e.  B ) )
3231adantl 482 . . . . . . 7  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( v  e.  V  ->  v  e.  B ) )
3332imp 445 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  v  e.  B )
34 eqid 2622 . . . . . . 7  |-  ( .s
`  M )  =  ( .s `  M
)
35 lincvalsc0.z . . . . . . 7  |-  Z  =  ( 0g `  M
)
3615, 2, 34, 5, 35lmod0vs 18896 . . . . . 6  |-  ( ( M  e.  LMod  /\  v  e.  B )  ->  (  .0.  ( .s `  M
) v )  =  Z )
3729, 33, 36syl2anc 693 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  (  .0.  ( .s `  M
) v )  =  Z )
3828, 37eqtrd 2656 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P B
)  /\  v  e.  V )  ->  (
( F `  v
) ( .s `  M ) v )  =  Z )
3938mpteq2dva 4744 . . 3  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( v  e.  V  |->  ( ( F `  v ) ( .s
`  M ) v ) )  =  ( v  e.  V  |->  Z ) )
4039oveq2d 6666 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( M  gsumg  ( v  e.  V  |->  ( ( F `  v ) ( .s
`  M ) v ) ) )  =  ( M  gsumg  ( v  e.  V  |->  Z ) ) )
41 lmodgrp 18870 . . . 4  |-  ( M  e.  LMod  ->  M  e. 
Grp )
42 grpmnd 17429 . . . 4  |-  ( M  e.  Grp  ->  M  e.  Mnd )
4341, 42syl 17 . . 3  |-  ( M  e.  LMod  ->  M  e. 
Mnd )
4435gsumz 17374 . . 3  |-  ( ( M  e.  Mnd  /\  V  e.  ~P B
)  ->  ( M  gsumg  ( v  e.  V  |->  Z ) )  =  Z )
4543, 44sylan 488 . 2  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( M  gsumg  ( v  e.  V  |->  Z ) )  =  Z )
4621, 40, 453eqtrd 2660 1  |-  ( ( M  e.  LMod  /\  V  e.  ~P B )  -> 
( F ( linC  `  M ) V )  =  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ~Pcpw 4158    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422   LModclmod 18863   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-seq 12802  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ring 18549  df-lmod 18865  df-linc 42195
This theorem is referenced by:  lcoc0  42211
  Copyright terms: Public domain W3C validator