MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfind Structured version   Visualization version   Unicode version

Theorem lindfind 20155
Description: A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s  |-  .x.  =  ( .s `  W )
lindfind.n  |-  N  =  ( LSpan `  W )
lindfind.l  |-  L  =  (Scalar `  W )
lindfind.z  |-  .0.  =  ( 0g `  L )
lindfind.k  |-  K  =  ( Base `  L
)
Assertion
Ref Expression
lindfind  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  -.  ( A  .x.  ( F `  E )
)  e.  ( N `
 ( F "
( dom  F  \  { E } ) ) ) )

Proof of Theorem lindfind
Dummy variables  a 
e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . 2  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  E  e.  dom  F )
2 eldifsn 4317 . . . 4  |-  ( A  e.  ( K  \  {  .0.  } )  <->  ( A  e.  K  /\  A  =/= 
.0.  ) )
32biimpri 218 . . 3  |-  ( ( A  e.  K  /\  A  =/=  .0.  )  ->  A  e.  ( K  \  {  .0.  } ) )
43adantl 482 . 2  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  A  e.  ( K  \  {  .0.  } ) )
5 simpll 790 . . . 4  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  F LIndF  W )
6 lindfind.l . . . . . . 7  |-  L  =  (Scalar `  W )
7 lindfind.k . . . . . . 7  |-  K  =  ( Base `  L
)
86, 7elbasfv 15920 . . . . . 6  |-  ( A  e.  K  ->  W  e.  _V )
98ad2antrl 764 . . . . 5  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  W  e.  _V )
10 rellindf 20147 . . . . . . 7  |-  Rel LIndF
1110brrelexi 5158 . . . . . 6  |-  ( F LIndF 
W  ->  F  e.  _V )
1211ad2antrr 762 . . . . 5  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  F  e.  _V )
13 eqid 2622 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
14 lindfind.s . . . . . 6  |-  .x.  =  ( .s `  W )
15 lindfind.n . . . . . 6  |-  N  =  ( LSpan `  W )
16 lindfind.z . . . . . 6  |-  .0.  =  ( 0g `  L )
1713, 14, 15, 6, 7, 16islindf 20151 . . . . 5  |-  ( ( W  e.  _V  /\  F  e.  _V )  ->  ( F LIndF  W  <->  ( F : dom  F --> ( Base `  W )  /\  A. e  e.  dom  F A. a  e.  ( K  \  {  .0.  } )  -.  ( a  .x.  ( F `  e ) )  e.  ( N `
 ( F "
( dom  F  \  {
e } ) ) ) ) ) )
189, 12, 17syl2anc 693 . . . 4  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  -> 
( F LIndF  W  <->  ( F : dom  F --> ( Base `  W )  /\  A. e  e.  dom  F A. a  e.  ( K  \  {  .0.  } )  -.  ( a  .x.  ( F `  e ) )  e.  ( N `
 ( F "
( dom  F  \  {
e } ) ) ) ) ) )
195, 18mpbid 222 . . 3  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  -> 
( F : dom  F --> ( Base `  W
)  /\  A. e  e.  dom  F A. a  e.  ( K  \  {  .0.  } )  -.  (
a  .x.  ( F `  e ) )  e.  ( N `  ( F " ( dom  F  \  { e } ) ) ) ) )
2019simprd 479 . 2  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  A. e  e.  dom  F A. a  e.  ( K  \  {  .0.  } )  -.  ( a 
.x.  ( F `  e ) )  e.  ( N `  ( F " ( dom  F  \  { e } ) ) ) )
21 fveq2 6191 . . . . . 6  |-  ( e  =  E  ->  ( F `  e )  =  ( F `  E ) )
2221oveq2d 6666 . . . . 5  |-  ( e  =  E  ->  (
a  .x.  ( F `  e ) )  =  ( a  .x.  ( F `  E )
) )
23 sneq 4187 . . . . . . . 8  |-  ( e  =  E  ->  { e }  =  { E } )
2423difeq2d 3728 . . . . . . 7  |-  ( e  =  E  ->  ( dom  F  \  { e } )  =  ( dom  F  \  { E } ) )
2524imaeq2d 5466 . . . . . 6  |-  ( e  =  E  ->  ( F " ( dom  F  \  { e } ) )  =  ( F
" ( dom  F  \  { E } ) ) )
2625fveq2d 6195 . . . . 5  |-  ( e  =  E  ->  ( N `  ( F " ( dom  F  \  { e } ) ) )  =  ( N `  ( F
" ( dom  F  \  { E } ) ) ) )
2722, 26eleq12d 2695 . . . 4  |-  ( e  =  E  ->  (
( a  .x.  ( F `  e )
)  e.  ( N `
 ( F "
( dom  F  \  {
e } ) ) )  <->  ( a  .x.  ( F `  E ) )  e.  ( N `
 ( F "
( dom  F  \  { E } ) ) ) ) )
2827notbid 308 . . 3  |-  ( e  =  E  ->  ( -.  ( a  .x.  ( F `  e )
)  e.  ( N `
 ( F "
( dom  F  \  {
e } ) ) )  <->  -.  ( a  .x.  ( F `  E
) )  e.  ( N `  ( F
" ( dom  F  \  { E } ) ) ) ) )
29 oveq1 6657 . . . . 5  |-  ( a  =  A  ->  (
a  .x.  ( F `  E ) )  =  ( A  .x.  ( F `  E )
) )
3029eleq1d 2686 . . . 4  |-  ( a  =  A  ->  (
( a  .x.  ( F `  E )
)  e.  ( N `
 ( F "
( dom  F  \  { E } ) ) )  <-> 
( A  .x.  ( F `  E )
)  e.  ( N `
 ( F "
( dom  F  \  { E } ) ) ) ) )
3130notbid 308 . . 3  |-  ( a  =  A  ->  ( -.  ( a  .x.  ( F `  E )
)  e.  ( N `
 ( F "
( dom  F  \  { E } ) ) )  <->  -.  ( A  .x.  ( F `  E )
)  e.  ( N `
 ( F "
( dom  F  \  { E } ) ) ) ) )
3228, 31rspc2va 3323 . 2  |-  ( ( ( E  e.  dom  F  /\  A  e.  ( K  \  {  .0.  } ) )  /\  A. e  e.  dom  F A. a  e.  ( K  \  {  .0.  } )  -.  ( a  .x.  ( F `  e ) )  e.  ( N `
 ( F "
( dom  F  \  {
e } ) ) ) )  ->  -.  ( A  .x.  ( F `
 E ) )  e.  ( N `  ( F " ( dom 
F  \  { E } ) ) ) )
331, 4, 20, 32syl21anc 1325 1  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  -.  ( A  .x.  ( F `  E )
)  e.  ( N `
 ( F "
( dom  F  \  { E } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571   {csn 4177   class class class wbr 4653   dom cdm 5114   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LSpanclspn 18971   LIndF clindf 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-slot 15861  df-base 15863  df-lindf 20145
This theorem is referenced by:  lindfind2  20157  lindfrn  20160  f1lindf  20161
  Copyright terms: Public domain W3C validator