MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfrn Structured version   Visualization version   Unicode version

Theorem lindfrn 20160
Description: The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfrn  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ran  F  e.  (LIndS `  W )
)

Proof of Theorem lindfrn
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
21lindff 20154 . . . 4  |-  ( ( F LIndF  W  /\  W  e.  LMod )  ->  F : dom  F --> ( Base `  W ) )
32ancoms 469 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  F : dom  F --> ( Base `  W
) )
4 frn 6053 . . 3  |-  ( F : dom  F --> ( Base `  W )  ->  ran  F 
C_  ( Base `  W
) )
53, 4syl 17 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ran  F  C_  ( Base `  W )
)
6 simpll 790 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  y  e.  dom  F )  ->  W  e.  LMod )
7 imassrn 5477 . . . . . . . . 9  |-  ( F
" ( dom  F  \  { y } ) )  C_  ran  F
87, 5syl5ss 3614 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( F " ( dom  F  \  { y } ) )  C_  ( Base `  W ) )
98adantr 481 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  y  e.  dom  F )  ->  ( F "
( dom  F  \  {
y } ) ) 
C_  ( Base `  W
) )
10 ffun 6048 . . . . . . . . 9  |-  ( F : dom  F --> ( Base `  W )  ->  Fun  F )
113, 10syl 17 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  Fun  F )
12 eldifsn 4317 . . . . . . . . . 10  |-  ( x  e.  ( ran  F  \  { ( F `  y ) } )  <-> 
( x  e.  ran  F  /\  x  =/=  ( F `  y )
) )
13 funfn 5918 . . . . . . . . . . . . . 14  |-  ( Fun 
F  <->  F  Fn  dom  F )
14 fvelrnb 6243 . . . . . . . . . . . . . 14  |-  ( F  Fn  dom  F  -> 
( x  e.  ran  F  <->  E. k  e.  dom  F ( F `  k
)  =  x ) )
1513, 14sylbi 207 . . . . . . . . . . . . 13  |-  ( Fun 
F  ->  ( x  e.  ran  F  <->  E. k  e.  dom  F ( F `
 k )  =  x ) )
1615adantr 481 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( x  e.  ran  F  <->  E. k  e.  dom  F ( F `  k
)  =  x ) )
17 difss 3737 . . . . . . . . . . . . . . . . . 18  |-  ( dom 
F  \  { y } )  C_  dom  F
1817jctr 565 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
F  ->  ( Fun  F  /\  ( dom  F  \  { y } ) 
C_  dom  F )
)
1918ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  ( k  e. 
dom  F  /\  ( F `  k )  =/=  ( F `  y
) ) )  -> 
( Fun  F  /\  ( dom  F  \  {
y } )  C_  dom  F ) )
20 simpl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  =/=  ( F `
 y ) )  ->  k  e.  dom  F )
21 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  y  ->  ( F `  k )  =  ( F `  y ) )
2221necon3i 2826 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  k )  =/=  ( F `  y )  ->  k  =/=  y )
2322adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  =/=  ( F `
 y ) )  ->  k  =/=  y
)
24 eldifsn 4317 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( dom  F  \  { y } )  <-> 
( k  e.  dom  F  /\  k  =/=  y
) )
2520, 23, 24sylanbrc 698 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  =/=  ( F `
 y ) )  ->  k  e.  ( dom  F  \  {
y } ) )
2625adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  ( k  e. 
dom  F  /\  ( F `  k )  =/=  ( F `  y
) ) )  -> 
k  e.  ( dom 
F  \  { y } ) )
27 funfvima2 6493 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  ( dom  F  \  { y } )  C_  dom  F )  ->  ( k  e.  ( dom  F  \  { y } )  ->  ( F `  k )  e.  ( F " ( dom 
F  \  { y } ) ) ) )
2819, 26, 27sylc 65 . . . . . . . . . . . . . . 15  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  ( k  e. 
dom  F  /\  ( F `  k )  =/=  ( F `  y
) ) )  -> 
( F `  k
)  e.  ( F
" ( dom  F  \  { y } ) ) )
2928expr 643 . . . . . . . . . . . . . 14  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  k  e.  dom  F )  ->  ( ( F `  k )  =/=  ( F `  y
)  ->  ( F `  k )  e.  ( F " ( dom 
F  \  { y } ) ) ) )
30 neeq1 2856 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  =  x  ->  (
( F `  k
)  =/=  ( F `
 y )  <->  x  =/=  ( F `  y ) ) )
31 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  =  x  ->  (
( F `  k
)  e.  ( F
" ( dom  F  \  { y } ) )  <->  x  e.  ( F " ( dom  F  \  { y } ) ) ) )
3230, 31imbi12d 334 . . . . . . . . . . . . . 14  |-  ( ( F `  k )  =  x  ->  (
( ( F `  k )  =/=  ( F `  y )  ->  ( F `  k
)  e.  ( F
" ( dom  F  \  { y } ) ) )  <->  ( x  =/=  ( F `  y
)  ->  x  e.  ( F " ( dom 
F  \  { y } ) ) ) ) )
3329, 32syl5ibcom 235 . . . . . . . . . . . . 13  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  k  e.  dom  F )  ->  ( ( F `  k )  =  x  ->  ( x  =/=  ( F `  y )  ->  x  e.  ( F " ( dom  F  \  { y } ) ) ) ) )
3433rexlimdva 3031 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( E. k  e. 
dom  F ( F `
 k )  =  x  ->  ( x  =/=  ( F `  y
)  ->  x  e.  ( F " ( dom 
F  \  { y } ) ) ) ) )
3516, 34sylbid 230 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( x  e.  ran  F  ->  ( x  =/=  ( F `  y
)  ->  x  e.  ( F " ( dom 
F  \  { y } ) ) ) ) )
3635impd 447 . . . . . . . . . 10  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( x  e. 
ran  F  /\  x  =/=  ( F `  y
) )  ->  x  e.  ( F " ( dom  F  \  { y } ) ) ) )
3712, 36syl5bi 232 . . . . . . . . 9  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( x  e.  ( ran  F  \  {
( F `  y
) } )  ->  x  e.  ( F " ( dom  F  \  { y } ) ) ) )
3837ssrdv 3609 . . . . . . . 8  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ran  F  \  {
( F `  y
) } )  C_  ( F " ( dom 
F  \  { y } ) ) )
3911, 38sylan 488 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  y  e.  dom  F )  ->  ( ran  F  \  { ( F `  y ) } ) 
C_  ( F "
( dom  F  \  {
y } ) ) )
40 eqid 2622 . . . . . . . 8  |-  ( LSpan `  W )  =  (
LSpan `  W )
411, 40lspss 18984 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( F " ( dom  F  \  { y } ) )  C_  ( Base `  W )  /\  ( ran  F  \  { ( F `  y ) } )  C_  ( F " ( dom  F  \  { y } ) ) )  ->  (
( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) )  C_  ( ( LSpan `  W ) `  ( F " ( dom 
F  \  { y } ) ) ) )
426, 9, 39, 41syl3anc 1326 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  y  e.  dom  F )  ->  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) )  C_  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { y } ) ) ) )
4342adantrr 753 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) )  C_  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { y } ) ) ) )
44 simplr 792 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  F LIndF  W )
45 simprl 794 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  y  e.  dom  F )
46 eldifi 3732 . . . . . . 7  |-  ( k  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  ->  k  e.  (
Base `  (Scalar `  W
) ) )
4746ad2antll 765 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  k  e.  (
Base `  (Scalar `  W
) ) )
48 eldifsni 4320 . . . . . . 7  |-  ( k  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  ->  k  =/=  ( 0g `  (Scalar `  W
) ) )
4948ad2antll 765 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  k  =/=  ( 0g `  (Scalar `  W
) ) )
50 eqid 2622 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
51 eqid 2622 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
52 eqid 2622 . . . . . . 7  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
53 eqid 2622 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
5450, 40, 51, 52, 53lindfind 20155 . . . . . 6  |-  ( ( ( F LIndF  W  /\  y  e.  dom  F )  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  k  =/=  ( 0g `  (Scalar `  W ) ) ) )  ->  -.  ( k ( .s
`  W ) ( F `  y ) )  e.  ( (
LSpan `  W ) `  ( F " ( dom 
F  \  { y } ) ) ) )
5544, 45, 47, 49, 54syl22anc 1327 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  -.  ( k
( .s `  W
) ( F `  y ) )  e.  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { y } ) ) ) )
5643, 55ssneldd 3606 . . . 4  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  -.  ( k
( .s `  W
) ( F `  y ) )  e.  ( ( LSpan `  W
) `  ( ran  F 
\  { ( F `
 y ) } ) ) )
5756ralrimivva 2971 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  A. y  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 y ) )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) ) )
5811, 13sylib 208 . . . 4  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  F  Fn  dom  F )
59 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( F `  y )  ->  (
k ( .s `  W ) x )  =  ( k ( .s `  W ) ( F `  y
) ) )
60 sneq 4187 . . . . . . . . . 10  |-  ( x  =  ( F `  y )  ->  { x }  =  { ( F `  y ) } )
6160difeq2d 3728 . . . . . . . . 9  |-  ( x  =  ( F `  y )  ->  ( ran  F  \  { x } )  =  ( ran  F  \  {
( F `  y
) } ) )
6261fveq2d 6195 . . . . . . . 8  |-  ( x  =  ( F `  y )  ->  (
( LSpan `  W ) `  ( ran  F  \  { x } ) )  =  ( (
LSpan `  W ) `  ( ran  F  \  {
( F `  y
) } ) ) )
6359, 62eleq12d 2695 . . . . . . 7  |-  ( x  =  ( F `  y )  ->  (
( k ( .s
`  W ) x )  e.  ( (
LSpan `  W ) `  ( ran  F  \  {
x } ) )  <-> 
( k ( .s
`  W ) ( F `  y ) )  e.  ( (
LSpan `  W ) `  ( ran  F  \  {
( F `  y
) } ) ) ) )
6463notbid 308 . . . . . 6  |-  ( x  =  ( F `  y )  ->  ( -.  ( k ( .s
`  W ) x )  e.  ( (
LSpan `  W ) `  ( ran  F  \  {
x } ) )  <->  -.  ( k ( .s
`  W ) ( F `  y ) )  e.  ( (
LSpan `  W ) `  ( ran  F  \  {
( F `  y
) } ) ) ) )
6564ralbidv 2986 . . . . 5  |-  ( x  =  ( F `  y )  ->  ( A. k  e.  (
( Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } )  -.  ( k ( .s `  W
) x )  e.  ( ( LSpan `  W
) `  ( ran  F 
\  { x }
) )  <->  A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 y ) )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) ) ) )
6665ralrn 6362 . . . 4  |-  ( F  Fn  dom  F  -> 
( A. x  e. 
ran  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) x )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { x } ) )  <->  A. y  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 y ) )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) ) ) )
6758, 66syl 17 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( A. x  e.  ran  F A. k  e.  ( ( Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } )  -.  ( k ( .s `  W
) x )  e.  ( ( LSpan `  W
) `  ( ran  F 
\  { x }
) )  <->  A. y  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 y ) )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) ) ) )
6857, 67mpbird 247 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  A. x  e.  ran  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) x )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { x } ) ) )
691, 50, 40, 51, 53, 52islinds2 20152 . . 3  |-  ( W  e.  LMod  ->  ( ran 
F  e.  (LIndS `  W )  <->  ( ran  F 
C_  ( Base `  W
)  /\  A. x  e.  ran  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) x )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { x } ) ) ) ) )
7069adantr 481 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( ran  F  e.  (LIndS `  W
)  <->  ( ran  F  C_  ( Base `  W
)  /\  A. x  e.  ran  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) x )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { x } ) ) ) ) )
715, 68, 70mpbir2and 957 1  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ran  F  e.  (LIndS `  W )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LModclmod 18863   LSpanclspn 18971   LIndF clindf 20143  LIndSclinds 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-slot 15861  df-base 15863  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lindf 20145  df-linds 20146
This theorem is referenced by:  islindf3  20165  lindsmm  20167  matunitlindflem2  33406
  Copyright terms: Public domain W3C validator