MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsind Structured version   Visualization version   Unicode version

Theorem lindsind 20156
Description: A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s  |-  .x.  =  ( .s `  W )
lindfind.n  |-  N  =  ( LSpan `  W )
lindfind.l  |-  L  =  (Scalar `  W )
lindfind.z  |-  .0.  =  ( 0g `  L )
lindfind.k  |-  K  =  ( Base `  L
)
Assertion
Ref Expression
lindsind  |-  ( ( ( F  e.  (LIndS `  W )  /\  E  e.  F )  /\  ( A  e.  K  /\  A  =/=  .0.  ) )  ->  -.  ( A  .x.  E )  e.  ( N `  ( F 
\  { E }
) ) )

Proof of Theorem lindsind
Dummy variables  a 
e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . 2  |-  ( ( ( F  e.  (LIndS `  W )  /\  E  e.  F )  /\  ( A  e.  K  /\  A  =/=  .0.  ) )  ->  E  e.  F
)
2 eldifsn 4317 . . . 4  |-  ( A  e.  ( K  \  {  .0.  } )  <->  ( A  e.  K  /\  A  =/= 
.0.  ) )
32biimpri 218 . . 3  |-  ( ( A  e.  K  /\  A  =/=  .0.  )  ->  A  e.  ( K  \  {  .0.  } ) )
43adantl 482 . 2  |-  ( ( ( F  e.  (LIndS `  W )  /\  E  e.  F )  /\  ( A  e.  K  /\  A  =/=  .0.  ) )  ->  A  e.  ( K  \  {  .0.  } ) )
5 elfvdm 6220 . . . . . 6  |-  ( F  e.  (LIndS `  W
)  ->  W  e.  dom LIndS )
6 eqid 2622 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
7 lindfind.s . . . . . . 7  |-  .x.  =  ( .s `  W )
8 lindfind.n . . . . . . 7  |-  N  =  ( LSpan `  W )
9 lindfind.l . . . . . . 7  |-  L  =  (Scalar `  W )
10 lindfind.k . . . . . . 7  |-  K  =  ( Base `  L
)
11 lindfind.z . . . . . . 7  |-  .0.  =  ( 0g `  L )
126, 7, 8, 9, 10, 11islinds2 20152 . . . . . 6  |-  ( W  e.  dom LIndS  ->  ( F  e.  (LIndS `  W
)  <->  ( F  C_  ( Base `  W )  /\  A. e  e.  F  A. a  e.  ( K  \  {  .0.  }
)  -.  ( a 
.x.  e )  e.  ( N `  ( F  \  { e } ) ) ) ) )
135, 12syl 17 . . . . 5  |-  ( F  e.  (LIndS `  W
)  ->  ( F  e.  (LIndS `  W )  <->  ( F  C_  ( Base `  W )  /\  A. e  e.  F  A. a  e.  ( K  \  {  .0.  } )  -.  ( a  .x.  e )  e.  ( N `  ( F 
\  { e } ) ) ) ) )
1413ibi 256 . . . 4  |-  ( F  e.  (LIndS `  W
)  ->  ( F  C_  ( Base `  W
)  /\  A. e  e.  F  A. a  e.  ( K  \  {  .0.  } )  -.  (
a  .x.  e )  e.  ( N `  ( F  \  { e } ) ) ) )
1514simprd 479 . . 3  |-  ( F  e.  (LIndS `  W
)  ->  A. e  e.  F  A. a  e.  ( K  \  {  .0.  } )  -.  (
a  .x.  e )  e.  ( N `  ( F  \  { e } ) ) )
1615ad2antrr 762 . 2  |-  ( ( ( F  e.  (LIndS `  W )  /\  E  e.  F )  /\  ( A  e.  K  /\  A  =/=  .0.  ) )  ->  A. e  e.  F  A. a  e.  ( K  \  {  .0.  }
)  -.  ( a 
.x.  e )  e.  ( N `  ( F  \  { e } ) ) )
17 oveq2 6658 . . . . 5  |-  ( e  =  E  ->  (
a  .x.  e )  =  ( a  .x.  E ) )
18 sneq 4187 . . . . . . 7  |-  ( e  =  E  ->  { e }  =  { E } )
1918difeq2d 3728 . . . . . 6  |-  ( e  =  E  ->  ( F  \  { e } )  =  ( F 
\  { E }
) )
2019fveq2d 6195 . . . . 5  |-  ( e  =  E  ->  ( N `  ( F  \  { e } ) )  =  ( N `
 ( F  \  { E } ) ) )
2117, 20eleq12d 2695 . . . 4  |-  ( e  =  E  ->  (
( a  .x.  e
)  e.  ( N `
 ( F  \  { e } ) )  <->  ( a  .x.  E )  e.  ( N `  ( F 
\  { E }
) ) ) )
2221notbid 308 . . 3  |-  ( e  =  E  ->  ( -.  ( a  .x.  e
)  e.  ( N `
 ( F  \  { e } ) )  <->  -.  ( a  .x.  E )  e.  ( N `  ( F 
\  { E }
) ) ) )
23 oveq1 6657 . . . . 5  |-  ( a  =  A  ->  (
a  .x.  E )  =  ( A  .x.  E ) )
2423eleq1d 2686 . . . 4  |-  ( a  =  A  ->  (
( a  .x.  E
)  e.  ( N `
 ( F  \  { E } ) )  <-> 
( A  .x.  E
)  e.  ( N `
 ( F  \  { E } ) ) ) )
2524notbid 308 . . 3  |-  ( a  =  A  ->  ( -.  ( a  .x.  E
)  e.  ( N `
 ( F  \  { E } ) )  <->  -.  ( A  .x.  E
)  e.  ( N `
 ( F  \  { E } ) ) ) )
2622, 25rspc2va 3323 . 2  |-  ( ( ( E  e.  F  /\  A  e.  ( K  \  {  .0.  }
) )  /\  A. e  e.  F  A. a  e.  ( K  \  {  .0.  } )  -.  ( a  .x.  e )  e.  ( N `  ( F 
\  { e } ) ) )  ->  -.  ( A  .x.  E
)  e.  ( N `
 ( F  \  { E } ) ) )
271, 4, 16, 26syl21anc 1325 1  |-  ( ( ( F  e.  (LIndS `  W )  /\  E  e.  F )  /\  ( A  e.  K  /\  A  =/=  .0.  ) )  ->  -.  ( A  .x.  E )  e.  ( N `  ( F 
\  { E }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    C_ wss 3574   {csn 4177   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LSpanclspn 18971  LIndSclinds 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-lindf 20145  df-linds 20146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator