Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmod1i2 Structured version   Visualization version   Unicode version

Theorem llnmod1i2 35146
Description: Version of modular law pmod1i 35134 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join  P  .\/  Q). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b  |-  B  =  ( Base `  K
)
atmod.l  |-  .<_  =  ( le `  K )
atmod.j  |-  .\/  =  ( join `  K )
atmod.m  |-  ./\  =  ( meet `  K )
atmod.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
llnmod1i2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
)  /\  X  .<_  Y )  ->  ( X  .\/  ( ( P  .\/  Q )  ./\  Y )
)  =  ( ( X  .\/  ( P 
.\/  Q ) ) 
./\  Y ) )

Proof of Theorem llnmod1i2
StepHypRef Expression
1 simpl1 1064 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  K  e.  HL )
2 simpl2 1065 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  X  e.  B )
3 simprl 794 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  P  e.  A )
4 simprr 796 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  A )
5 atmod.b . . . . . 6  |-  B  =  ( Base `  K
)
6 atmod.j . . . . . 6  |-  .\/  =  ( join `  K )
7 atmod.a . . . . . 6  |-  A  =  ( Atoms `  K )
8 eqid 2622 . . . . . 6  |-  ( pmap `  K )  =  (
pmap `  K )
9 eqid 2622 . . . . . 6  |-  ( +P `  K )  =  ( +P `  K )
105, 6, 7, 8, 9pmapjlln1 35141 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( pmap `  K ) `  ( X  .\/  ( P  .\/  Q ) ) )  =  ( ( ( pmap `  K
) `  X )
( +P `  K ) ( (
pmap `  K ) `  ( P  .\/  Q
) ) ) )
111, 2, 3, 4, 10syl13anc 1328 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  (
( pmap `  K ) `  ( X  .\/  ( P  .\/  Q ) ) )  =  ( ( ( pmap `  K
) `  X )
( +P `  K ) ( (
pmap `  K ) `  ( P  .\/  Q
) ) ) )
12 hllat 34650 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
131, 12syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Lat )
145, 7atbase 34576 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
153, 14syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  P  e.  B )
165, 7atbase 34576 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
174, 16syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  B )
185, 6latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
1913, 15, 17, 18syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  e.  B )
20 simpl3 1066 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  Y  e.  B )
21 atmod.l . . . . . 6  |-  .<_  =  ( le `  K )
22 atmod.m . . . . . 6  |-  ./\  =  ( meet `  K )
235, 21, 6, 22, 8, 9hlmod1i 35142 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  ( P  .\/  Q
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .<_  Y  /\  (
( pmap `  K ) `  ( X  .\/  ( P  .\/  Q ) ) )  =  ( ( ( pmap `  K
) `  X )
( +P `  K ) ( (
pmap `  K ) `  ( P  .\/  Q
) ) ) )  ->  ( ( X 
.\/  ( P  .\/  Q ) )  ./\  Y
)  =  ( X 
.\/  ( ( P 
.\/  Q )  ./\  Y ) ) ) )
241, 2, 19, 20, 23syl13anc 1328 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  (
( X  .<_  Y  /\  ( ( pmap `  K
) `  ( X  .\/  ( P  .\/  Q
) ) )  =  ( ( ( pmap `  K ) `  X
) ( +P `  K ) ( (
pmap `  K ) `  ( P  .\/  Q
) ) ) )  ->  ( ( X 
.\/  ( P  .\/  Q ) )  ./\  Y
)  =  ( X 
.\/  ( ( P 
.\/  Q )  ./\  Y ) ) ) )
2511, 24mpan2d 710 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<_  Y  ->  (
( X  .\/  ( P  .\/  Q ) ) 
./\  Y )  =  ( X  .\/  (
( P  .\/  Q
)  ./\  Y )
) ) )
26253impia 1261 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
)  /\  X  .<_  Y )  ->  ( ( X  .\/  ( P  .\/  Q ) )  ./\  Y
)  =  ( X 
.\/  ( ( P 
.\/  Q )  ./\  Y ) ) )
2726eqcomd 2628 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A
)  /\  X  .<_  Y )  ->  ( X  .\/  ( ( P  .\/  Q )  ./\  Y )
)  =  ( ( X  .\/  ( P 
.\/  Q ) ) 
./\  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   pmapcpmap 34783   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082
This theorem is referenced by:  llnmod2i2  35149  dalawlem12  35168
  Copyright terms: Public domain W3C validator