| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmod1i | Structured version Visualization version Unicode version | ||
| Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.) |
| Ref | Expression |
|---|---|
| pmod.a |
|
| pmod.s |
|
| pmod.p |
|
| Ref | Expression |
|---|---|
| pmod1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . 5
| |
| 2 | eqid 2622 |
. . . . 5
| |
| 3 | pmod.a |
. . . . 5
| |
| 4 | pmod.s |
. . . . 5
| |
| 5 | pmod.p |
. . . . 5
| |
| 6 | 1, 2, 3, 4, 5 | pmodlem2 35133 |
. . . 4
|
| 7 | 6 | 3expa 1265 |
. . 3
|
| 8 | inss1 3833 |
. . . . 5
| |
| 9 | simpll 790 |
. . . . . 6
| |
| 10 | simplr2 1104 |
. . . . . 6
| |
| 11 | simplr1 1103 |
. . . . . 6
| |
| 12 | 3, 5 | paddss2 35104 |
. . . . . 6
|
| 13 | 9, 10, 11, 12 | syl3anc 1326 |
. . . . 5
|
| 14 | 8, 13 | mpi 20 |
. . . 4
|
| 15 | simpl 473 |
. . . . . . 7
| |
| 16 | 3, 4 | psubssat 35040 |
. . . . . . . 8
|
| 17 | 16 | 3ad2antr3 1228 |
. . . . . . 7
|
| 18 | simpr2 1068 |
. . . . . . . 8
| |
| 19 | ssinss1 3841 |
. . . . . . . 8
| |
| 20 | 18, 19 | syl 17 |
. . . . . . 7
|
| 21 | 3, 5 | paddss1 35103 |
. . . . . . 7
|
| 22 | 15, 17, 20, 21 | syl3anc 1326 |
. . . . . 6
|
| 23 | 22 | imp 445 |
. . . . 5
|
| 24 | simplr3 1105 |
. . . . . . . 8
| |
| 25 | 9, 24, 16 | syl2anc 693 |
. . . . . . 7
|
| 26 | inss2 3834 |
. . . . . . . 8
| |
| 27 | 3, 5 | paddss2 35104 |
. . . . . . . 8
|
| 28 | 26, 27 | mpi 20 |
. . . . . . 7
|
| 29 | 9, 25, 25, 28 | syl3anc 1326 |
. . . . . 6
|
| 30 | 4, 5 | paddidm 35127 |
. . . . . . 7
|
| 31 | 9, 24, 30 | syl2anc 693 |
. . . . . 6
|
| 32 | 29, 31 | sseqtrd 3641 |
. . . . 5
|
| 33 | 23, 32 | sstrd 3613 |
. . . 4
|
| 34 | 14, 33 | ssind 3837 |
. . 3
|
| 35 | 7, 34 | eqssd 3620 |
. 2
|
| 36 | 35 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-padd 35082 |
| This theorem is referenced by: pmod2iN 35135 pmodN 35136 pmodl42N 35137 hlmod1i 35142 |
| Copyright terms: Public domain | W3C validator |