| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlmod1i | Structured version Visualization version Unicode version | ||
| Description: A version of the modular law pmod1i 35134 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.) |
| Ref | Expression |
|---|---|
| hlmod.b |
|
| hlmod.l |
|
| hlmod.j |
|
| hlmod.m |
|
| hlmod.f |
|
| hlmod.p |
|
| Ref | Expression |
|---|---|
| hlmod1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlmod.b |
. . 3
| |
| 2 | hlmod.l |
. . 3
| |
| 3 | hllat 34650 |
. . . 4
| |
| 4 | 3 | 3ad2ant1 1082 |
. . 3
|
| 5 | simp21 1094 |
. . . . 5
| |
| 6 | simp22 1095 |
. . . . 5
| |
| 7 | hlmod.j |
. . . . . 6
| |
| 8 | 1, 7 | latjcl 17051 |
. . . . 5
|
| 9 | 4, 5, 6, 8 | syl3anc 1326 |
. . . 4
|
| 10 | simp23 1096 |
. . . 4
| |
| 11 | hlmod.m |
. . . . 5
| |
| 12 | 1, 11 | latmcl 17052 |
. . . 4
|
| 13 | 4, 9, 10, 12 | syl3anc 1326 |
. . 3
|
| 14 | 1, 11 | latmcl 17052 |
. . . . 5
|
| 15 | 4, 6, 10, 14 | syl3anc 1326 |
. . . 4
|
| 16 | 1, 7 | latjcl 17051 |
. . . 4
|
| 17 | 4, 5, 15, 16 | syl3anc 1326 |
. . 3
|
| 18 | simp1 1061 |
. . . . . . 7
| |
| 19 | eqid 2622 |
. . . . . . . . 9
| |
| 20 | hlmod.f |
. . . . . . . . 9
| |
| 21 | 1, 19, 20 | pmapssat 35045 |
. . . . . . . 8
|
| 22 | 18, 5, 21 | syl2anc 693 |
. . . . . . 7
|
| 23 | 1, 19, 20 | pmapssat 35045 |
. . . . . . . 8
|
| 24 | 18, 6, 23 | syl2anc 693 |
. . . . . . 7
|
| 25 | eqid 2622 |
. . . . . . . . 9
| |
| 26 | 1, 25, 20 | pmapsub 35054 |
. . . . . . . 8
|
| 27 | 4, 10, 26 | syl2anc 693 |
. . . . . . 7
|
| 28 | simp3l 1089 |
. . . . . . . 8
| |
| 29 | 1, 2, 20 | pmaple 35047 |
. . . . . . . . 9
|
| 30 | 18, 5, 10, 29 | syl3anc 1326 |
. . . . . . . 8
|
| 31 | 28, 30 | mpbid 222 |
. . . . . . 7
|
| 32 | hlmod.p |
. . . . . . . . 9
| |
| 33 | 19, 25, 32 | pmod1i 35134 |
. . . . . . . 8
|
| 34 | 33 | 3impia 1261 |
. . . . . . 7
|
| 35 | 18, 22, 24, 27, 31, 34 | syl131anc 1339 |
. . . . . 6
|
| 36 | 1, 11, 19, 20 | pmapmeet 35059 |
. . . . . . . 8
|
| 37 | 18, 9, 10, 36 | syl3anc 1326 |
. . . . . . 7
|
| 38 | simp3r 1090 |
. . . . . . . 8
| |
| 39 | 38 | ineq1d 3813 |
. . . . . . 7
|
| 40 | 37, 39 | eqtrd 2656 |
. . . . . 6
|
| 41 | 1, 11, 19, 20 | pmapmeet 35059 |
. . . . . . . 8
|
| 42 | 18, 6, 10, 41 | syl3anc 1326 |
. . . . . . 7
|
| 43 | 42 | oveq2d 6666 |
. . . . . 6
|
| 44 | 35, 40, 43 | 3eqtr4d 2666 |
. . . . 5
|
| 45 | 1, 7, 20, 32 | pmapjoin 35138 |
. . . . . 6
|
| 46 | 4, 5, 15, 45 | syl3anc 1326 |
. . . . 5
|
| 47 | 44, 46 | eqsstrd 3639 |
. . . 4
|
| 48 | 1, 2, 20 | pmaple 35047 |
. . . . 5
|
| 49 | 18, 13, 17, 48 | syl3anc 1326 |
. . . 4
|
| 50 | 47, 49 | mpbird 247 |
. . 3
|
| 51 | 1, 2, 7, 11 | mod1ile 17105 |
. . . . 5
|
| 52 | 51 | 3impia 1261 |
. . . 4
|
| 53 | 4, 5, 6, 10, 28, 52 | syl131anc 1339 |
. . 3
|
| 54 | 1, 2, 4, 13, 17, 50, 53 | latasymd 17057 |
. 2
|
| 55 | 54 | 3expia 1267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-padd 35082 |
| This theorem is referenced by: atmod1i1 35143 atmod1i2 35145 llnmod1i2 35146 |
| Copyright terms: Public domain | W3C validator |