Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlmod1i Structured version   Visualization version   Unicode version

Theorem hlmod1i 35142
Description: A version of the modular law pmod1i 35134 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
Hypotheses
Ref Expression
hlmod.b  |-  B  =  ( Base `  K
)
hlmod.l  |-  .<_  =  ( le `  K )
hlmod.j  |-  .\/  =  ( join `  K )
hlmod.m  |-  ./\  =  ( meet `  K )
hlmod.f  |-  F  =  ( pmap `  K
)
hlmod.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
hlmod1i  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Z  /\  ( F `  ( X 
.\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )  ->  (
( X  .\/  Y
)  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )

Proof of Theorem hlmod1i
StepHypRef Expression
1 hlmod.b . . 3  |-  B  =  ( Base `  K
)
2 hlmod.l . . 3  |-  .<_  =  ( le `  K )
3 hllat 34650 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
433ad2ant1 1082 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  K  e.  Lat )
5 simp21 1094 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  X  e.  B )
6 simp22 1095 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  Y  e.  B )
7 hlmod.j . . . . . 6  |-  .\/  =  ( join `  K )
81, 7latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
94, 5, 6, 8syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  Y )  e.  B
)
10 simp23 1096 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  Z  e.  B )
11 hlmod.m . . . . 5  |-  ./\  =  ( meet `  K )
121, 11latmcl 17052 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
134, 9, 10, 12syl3anc 1326 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  e.  B )
141, 11latmcl 17052 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  e.  B )
154, 6, 10, 14syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( Y  ./\ 
Z )  e.  B
)
161, 7latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  ./\  Z )  e.  B )  -> 
( X  .\/  ( Y  ./\  Z ) )  e.  B )
174, 5, 15, 16syl3anc 1326 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  ( Y  ./\  Z
) )  e.  B
)
18 simp1 1061 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  K  e.  HL )
19 eqid 2622 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
20 hlmod.f . . . . . . . . 9  |-  F  =  ( pmap `  K
)
211, 19, 20pmapssat 35045 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
2218, 5, 21syl2anc 693 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  X )  C_  ( Atoms `  K ) )
231, 19, 20pmapssat 35045 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
2418, 6, 23syl2anc 693 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  Y )  C_  ( Atoms `  K ) )
25 eqid 2622 . . . . . . . . 9  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
261, 25, 20pmapsub 35054 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Z  e.  B )  ->  ( F `  Z
)  e.  ( PSubSp `  K ) )
274, 10, 26syl2anc 693 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  Z )  e.  (
PSubSp `  K ) )
28 simp3l 1089 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  X  .<_  Z )
291, 2, 20pmaple 35047 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<_  Z  <->  ( F `  X )  C_  ( F `  Z )
) )
3018, 5, 10, 29syl3anc 1326 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .<_  Z  <->  ( F `  X )  C_  ( F `  Z )
) )
3128, 30mpbid 222 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  X )  C_  ( F `  Z )
)
32 hlmod.p . . . . . . . . 9  |-  .+  =  ( +P `  K
)
3319, 25, 32pmod1i 35134 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( ( F `  X )  C_  ( Atoms `  K )  /\  ( F `  Y ) 
C_  ( Atoms `  K
)  /\  ( F `  Z )  e.  (
PSubSp `  K ) ) )  ->  ( ( F `  X )  C_  ( F `  Z
)  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) ) )
34333impia 1261 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( F `  X )  C_  ( Atoms `  K )  /\  ( F `  Y ) 
C_  ( Atoms `  K
)  /\  ( F `  Z )  e.  (
PSubSp `  K ) )  /\  ( F `  X )  C_  ( F `  Z )
)  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) )
3518, 22, 24, 27, 31, 34syl131anc 1339 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) )
361, 11, 19, 20pmapmeet 35059 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z ) )  =  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z ) ) )
3718, 9, 10, 36syl3anc 1326 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  ( X 
.\/  Y ) )  i^i  ( F `  Z ) ) )
38 simp3r 1090 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( X  .\/  Y
) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) )
3938ineq1d 3813 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z
) )  =  ( ( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) ) )
4037, 39eqtrd 2656 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) ) )
411, 11, 19, 20pmapmeet 35059 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B  /\  Z  e.  B )  ->  ( F `  ( Y  ./\  Z ) )  =  ( ( F `
 Y )  i^i  ( F `  Z
) ) )
4218, 6, 10, 41syl3anc 1326 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( Y  ./\  Z
) )  =  ( ( F `  Y
)  i^i  ( F `  Z ) ) )
4342oveq2d 6666 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  X )  .+  ( F `  ( Y  ./\  Z ) ) )  =  ( ( F `  X ) 
.+  ( ( F `
 Y )  i^i  ( F `  Z
) ) ) )
4435, 40, 433eqtr4d 2666 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  X ) 
.+  ( F `  ( Y  ./\  Z ) ) ) )
451, 7, 20, 32pmapjoin 35138 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  ./\  Z )  e.  B )  -> 
( ( F `  X )  .+  ( F `  ( Y  ./\ 
Z ) ) ) 
C_  ( F `  ( X  .\/  ( Y 
./\  Z ) ) ) )
464, 5, 15, 45syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  X )  .+  ( F `  ( Y  ./\  Z ) ) )  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) )
4744, 46eqsstrd 3639 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) )
481, 2, 20pmaple 35047 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  ( X  .\/  ( Y  ./\  Z ) )  e.  B
)  ->  ( (
( X  .\/  Y
)  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z ) )  <-> 
( F `  (
( X  .\/  Y
)  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) ) )
4918, 13, 17, 48syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( (
( X  .\/  Y
)  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z ) )  <-> 
( F `  (
( X  .\/  Y
)  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) ) )
5047, 49mpbird 247 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z
) ) )
511, 2, 7, 11mod1ile 17105 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Z  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
52513impia 1261 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  X  .<_  Z )  ->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
534, 5, 6, 10, 28, 52syl131anc 1339 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
541, 2, 4, 13, 17, 50, 53latasymd 17057 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  =  ( X 
.\/  ( Y  ./\  Z ) ) )
55543expia 1267 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Z  /\  ( F `  ( X 
.\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )  ->  (
( X  .\/  Y
)  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   PSubSpcpsubsp 34782   pmapcpmap 34783   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082
This theorem is referenced by:  atmod1i1  35143  atmod1i2  35145  llnmod1i2  35146
  Copyright terms: Public domain W3C validator