MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcls Structured version   Visualization version   Unicode version

Theorem lmcls 21106
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmff.1  |-  Z  =  ( ZZ>= `  M )
lmff.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmff.4  |-  ( ph  ->  M  e.  ZZ )
lmcls.5  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcls.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  S )
lmcls.8  |-  ( ph  ->  S  C_  X )
Assertion
Ref Expression
lmcls  |-  ( ph  ->  P  e.  ( ( cls `  J ) `
 S ) )
Distinct variable groups:    k, F    k, J    k, M    P, k    S, k    ph, k    k, X    k, Z

Proof of Theorem lmcls
Dummy variables  j  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcls.5 . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) P )
2 lmff.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 lmff.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
4 lmff.4 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
52, 3, 4lmbr2 21063 . . . . 5  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
61, 5mpbid 222 . . . 4  |-  ( ph  ->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
76simp3d 1075 . . 3  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
83r19.2uz 14091 . . . . . 6  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  E. k  e.  Z  ( k  e.  dom  F  /\  ( F `  k )  e.  u
) )
9 lmcls.7 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  S )
10 inelcm 4032 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  u  /\  ( F `  k )  e.  S )  -> 
( u  i^i  S
)  =/=  (/) )
1110a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  u  /\  ( F `  k
)  e.  S )  ->  ( u  i^i 
S )  =/=  (/) ) )
129, 11mpan2d 710 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  -> 
( u  i^i  S
)  =/=  (/) ) )
1312adantld 483 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  u
)  ->  ( u  i^i  S )  =/=  (/) ) )
1413rexlimdva 3031 . . . . . 6  |-  ( ph  ->  ( E. k  e.  Z  ( k  e. 
dom  F  /\  ( F `  k )  e.  u )  ->  (
u  i^i  S )  =/=  (/) ) )
158, 14syl5 34 . . . . 5  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
)  ->  ( u  i^i  S )  =/=  (/) ) )
1615imim2d 57 . . . 4  |-  ( ph  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) )  ->  ( P  e.  u  ->  ( u  i^i  S )  =/=  (/) ) ) )
1716ralimdv 2963 . . 3  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) )  ->  A. u  e.  J  ( P  e.  u  ->  ( u  i^i  S )  =/=  (/) ) ) )
187, 17mpd 15 . 2  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  ( u  i^i  S
)  =/=  (/) ) )
19 topontop 20718 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
202, 19syl 17 . . 3  |-  ( ph  ->  J  e.  Top )
21 lmcls.8 . . . 4  |-  ( ph  ->  S  C_  X )
22 toponuni 20719 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
232, 22syl 17 . . . 4  |-  ( ph  ->  X  =  U. J
)
2421, 23sseqtrd 3641 . . 3  |-  ( ph  ->  S  C_  U. J )
25 lmcl 21101 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  P  e.  X )
262, 1, 25syl2anc 693 . . . 4  |-  ( ph  ->  P  e.  X )
2726, 23eleqtrd 2703 . . 3  |-  ( ph  ->  P  e.  U. J
)
28 eqid 2622 . . . 4  |-  U. J  =  U. J
2928elcls 20877 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. u  e.  J  ( P  e.  u  -> 
( u  i^i  S
)  =/=  (/) ) ) )
3020, 24, 27, 29syl3anc 1326 . 2  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. u  e.  J  ( P  e.  u  -> 
( u  i^i  S
)  =/=  (/) ) ) )
3118, 30mpbird 247 1  |-  ( ph  ->  P  e.  ( ( cls `  J ) `
 S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   ZZcz 11377   ZZ>=cuz 11687   Topctop 20698  TopOnctopon 20715   clsccl 20822   ~~> tclm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-lm 21033
This theorem is referenced by:  lmcld  21107  1stcelcls  21264  caublcls  23107
  Copyright terms: Public domain W3C validator