MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcelcls Structured version   Visualization version   Unicode version

Theorem 1stcelcls 21264
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 9257. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
1stcelcls.1  |-  X  = 
U. J
Assertion
Ref Expression
1stcelcls  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
Distinct variable groups:    f, J    P, f    S, f    f, X

Proof of Theorem 1stcelcls
Dummy variables  g 
j  k  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  J  e.  1stc )
2 1stctop 21246 . . . . . . 7  |-  ( J  e.  1stc  ->  J  e. 
Top )
3 1stcelcls.1 . . . . . . . 8  |-  X  = 
U. J
43clsss3 20863 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
52, 4sylan 488 . . . . . 6  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  (
( cls `  J
) `  S )  C_  X )
65sselda 3603 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  P  e.  X )
731stcfb 21248 . . . . 5  |-  ( ( J  e.  1stc  /\  P  e.  X )  ->  E. g
( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k )  C_  x
) ) )
81, 6, 7syl2anc 693 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  E. g
( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k )  C_  x
) ) )
9 simpr1 1067 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  g : NN --> J )
109ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (
g `  n )  e.  J )
113elcls2 20878 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( cls `  J
) `  S )  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) ) )
122, 11sylan 488 . . . . . . . . . . . 12  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) ) ) )
1312simplbda 654 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )
1413ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )
15 simpr2 1068 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
) )
16 simpl 473 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( g `
 k )  /\  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )  ->  P  e.  ( g `  k ) )
1716ralimi 2952 . . . . . . . . . . . 12  |-  ( A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  ->  A. k  e.  NN  P  e.  ( g `  k ) )
1815, 17syl 17 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  P  e.  ( g `  k ) )
19 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
g `  k )  =  ( g `  n ) )
2019eleq2d 2687 . . . . . . . . . . . 12  |-  ( k  =  n  ->  ( P  e.  ( g `  k )  <->  P  e.  ( g `  n
) ) )
2120rspccva 3308 . . . . . . . . . . 11  |-  ( ( A. k  e.  NN  P  e.  ( g `  k )  /\  n  e.  NN )  ->  P  e.  ( g `  n
) )
2218, 21sylan 488 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  P  e.  ( g `  n
) )
23 eleq2 2690 . . . . . . . . . . . 12  |-  ( y  =  ( g `  n )  ->  ( P  e.  y  <->  P  e.  ( g `  n
) ) )
24 ineq1 3807 . . . . . . . . . . . . 13  |-  ( y  =  ( g `  n )  ->  (
y  i^i  S )  =  ( ( g `
 n )  i^i 
S ) )
2524neeq1d 2853 . . . . . . . . . . . 12  |-  ( y  =  ( g `  n )  ->  (
( y  i^i  S
)  =/=  (/)  <->  ( (
g `  n )  i^i  S )  =/=  (/) ) )
2623, 25imbi12d 334 . . . . . . . . . . 11  |-  ( y  =  ( g `  n )  ->  (
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) )  <->  ( P  e.  ( g `  n
)  ->  ( (
g `  n )  i^i  S )  =/=  (/) ) ) )
2726rspcv 3305 . . . . . . . . . 10  |-  ( ( g `  n )  e.  J  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) )  -> 
( P  e.  ( g `  n )  ->  ( ( g `
 n )  i^i 
S )  =/=  (/) ) ) )
2810, 14, 22, 27syl3c 66 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (
( g `  n
)  i^i  S )  =/=  (/) )
29 elin 3796 . . . . . . . . . . . 12  |-  ( x  e.  ( ( g `
 n )  i^i 
S )  <->  ( x  e.  ( g `  n
)  /\  x  e.  S ) )
30 ancom 466 . . . . . . . . . . . 12  |-  ( ( x  e.  ( g `
 n )  /\  x  e.  S )  <->  ( x  e.  S  /\  x  e.  ( g `  n ) ) )
3129, 30bitri 264 . . . . . . . . . . 11  |-  ( x  e.  ( ( g `
 n )  i^i 
S )  <->  ( x  e.  S  /\  x  e.  ( g `  n
) ) )
3231exbii 1774 . . . . . . . . . 10  |-  ( E. x  x  e.  ( ( g `  n
)  i^i  S )  <->  E. x ( x  e.  S  /\  x  e.  ( g `  n
) ) )
33 n0 3931 . . . . . . . . . 10  |-  ( ( ( g `  n
)  i^i  S )  =/=  (/)  <->  E. x  x  e.  ( ( g `  n )  i^i  S
) )
34 df-rex 2918 . . . . . . . . . 10  |-  ( E. x  e.  S  x  e.  ( g `  n )  <->  E. x
( x  e.  S  /\  x  e.  (
g `  n )
) )
3532, 33, 343bitr4i 292 . . . . . . . . 9  |-  ( ( ( g `  n
)  i^i  S )  =/=  (/)  <->  E. x  e.  S  x  e.  ( g `  n ) )
3628, 35sylib 208 . . . . . . . 8  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  E. x  e.  S  x  e.  ( g `  n
) )
372ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  J  e.  Top )
383topopn 20711 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  X  e.  J )
3937, 38syl 17 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  X  e.  J )
40 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  S  C_  X
)
4139, 40ssexd 4805 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  S  e.  _V )
42 fvi 6255 . . . . . . . . . . 11  |-  ( S  e.  _V  ->  (  _I  `  S )  =  S )
4341, 42syl 17 . . . . . . . . . 10  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  (  _I  `  S )  =  S )
4443ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (  _I  `  S )  =  S )
4544rexeqdv 3145 . . . . . . . 8  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  ( E. x  e.  (  _I  `  S ) x  e.  ( g `  n )  <->  E. x  e.  S  x  e.  ( g `  n
) ) )
4636, 45mpbird 247 . . . . . . 7  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  E. x  e.  (  _I  `  S
) x  e.  ( g `  n ) )
4746ralrimiva 2966 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. n  e.  NN  E. x  e.  (  _I  `  S
) x  e.  ( g `  n ) )
48 fvex 6201 . . . . . . 7  |-  (  _I 
`  S )  e. 
_V
49 nnenom 12779 . . . . . . 7  |-  NN  ~~  om
50 eleq1 2689 . . . . . . 7  |-  ( x  =  ( f `  n )  ->  (
x  e.  ( g `
 n )  <->  ( f `  n )  e.  ( g `  n ) ) )
5148, 49, 50axcc4 9261 . . . . . 6  |-  ( A. n  e.  NN  E. x  e.  (  _I  `  S
) x  e.  ( g `  n )  ->  E. f ( f : NN --> (  _I 
`  S )  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )
5247, 51syl 17 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  E. f
( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) ) )
5343feq3d 6032 . . . . . . . . 9  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( f : NN --> (  _I  `  S )  <->  f : NN
--> S ) )
5453biimpd 219 . . . . . . . 8  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( f : NN --> (  _I  `  S )  ->  f : NN --> S ) )
5554adantr 481 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
f : NN --> (  _I 
`  S )  -> 
f : NN --> S ) )
566ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  P  e.  X )
57 simplr3 1105 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
)
58 eleq2 2690 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( P  e.  x  <->  P  e.  y ) )
59 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  j  ->  (
g `  k )  =  ( g `  j ) )
6059sseq1d 3632 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  (
( g `  k
)  C_  x  <->  ( g `  j )  C_  x
) )
6160cbvrexv 3172 . . . . . . . . . . . . . . . 16  |-  ( E. k  e.  NN  (
g `  k )  C_  x  <->  E. j  e.  NN  ( g `  j
)  C_  x )
62 sseq2 3627 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( g `  j
)  C_  x  <->  ( g `  j )  C_  y
) )
6362rexbidv 3052 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( E. j  e.  NN  ( g `  j
)  C_  x  <->  E. j  e.  NN  ( g `  j )  C_  y
) )
6461, 63syl5bb 272 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( E. k  e.  NN  ( g `  k
)  C_  x  <->  E. j  e.  NN  ( g `  j )  C_  y
) )
6558, 64imbi12d 334 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )  <->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j
)  C_  y )
) )
6665rspccva 3308 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )  /\  y  e.  J
)  ->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j )  C_  y
) )
6757, 66sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j
)  C_  y )
)
68 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  e.  ( g `
 k )  /\  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )  -> 
( g `  (
k  +  1 ) )  C_  ( g `  k ) )
6968ralimi 2952 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )
7015, 69syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)
7170adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )
72 simprrr 805 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  j  e.  NN )
73 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  j  ->  (
g `  n )  =  ( g `  j ) )
7473sseq1d 3632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  j  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  j )  C_  (
g `  j )
) )
7574imbi2d 330 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  j  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  j )  C_  ( g `  j
) ) ) )
76 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
7776sseq1d 3632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  m  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  m )  C_  (
g `  j )
) )
7877imbi2d 330 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  m  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  m )  C_  ( g `  j
) ) ) )
79 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  ( m  + 
1 )  ->  (
g `  n )  =  ( g `  ( m  +  1
) ) )
8079sseq1d 3632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  ( m  + 
1 )  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  ( m  +  1 ) )  C_  (
g `  j )
) )
8180imbi2d 330 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  ( m  + 
1 )  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
82 ssid 3624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g `
 j )  C_  ( g `  j
)
83822a1i 12 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  ZZ  ->  (
( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  j )  C_  (
g `  j )
) )
84 eluznn 11758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  NN  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  NN )
85 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
8685fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( k  =  m  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( m  +  1
) ) )
87 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( k  =  m  ->  (
g `  k )  =  ( g `  m ) )
8886, 87sseq12d 3634 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( k  =  m  ->  (
( g `  (
k  +  1 ) )  C_  ( g `  k )  <->  ( g `  ( m  +  1 ) )  C_  (
g `  m )
) )
8988rspccva 3308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  m  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  m ) )
9084, 89sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  (
j  e.  NN  /\  m  e.  ( ZZ>= `  j ) ) )  ->  ( g `  ( m  +  1
) )  C_  (
g `  m )
)
9190anassrs 680 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( g `  ( m  +  1
) )  C_  (
g `  m )
)
92 sstr2 3610 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( g `  ( m  +  1 ) ) 
C_  ( g `  m )  ->  (
( g `  m
)  C_  ( g `  j )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) )
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( ( g `
 m )  C_  ( g `  j
)  ->  ( g `  ( m  +  1 ) )  C_  (
g `  j )
) )
9493expcom 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
( g `  m
)  C_  ( g `  j )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
9594a2d 29 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  m )  C_  (
g `  j )
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
9675, 78, 81, 78, 83, 95uzind4 11746 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  m )  C_  ( g `  j
) ) )
9796com12 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
m  e.  ( ZZ>= `  j )  ->  (
g `  m )  C_  ( g `  j
) ) )
9897ralrimiv 2965 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  A. m  e.  ( ZZ>= `  j )
( g `  m
)  C_  ( g `  j ) )
9971, 72, 98syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( g `  m ) 
C_  ( g `  j ) )
10072, 84sylan 488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  NN )
101 simplr 792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) )  ->  A. n  e.  NN  ( f `  n
)  e.  ( g `
 n ) )
102101ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  A. n  e.  NN  ( f `  n
)  e.  ( g `
 n ) )
103 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  m  ->  (
f `  n )  =  ( f `  m ) )
104103, 76eleq12d 2695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  m  ->  (
( f `  n
)  e.  ( g `
 n )  <->  ( f `  m )  e.  ( g `  m ) ) )
105104rspcv 3305 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  ( A. n  e.  NN  ( f `  n
)  e.  ( g `
 n )  -> 
( f `  m
)  e.  ( g `
 m ) ) )
106100, 102, 105sylc 65 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( f `  m )  e.  ( g `  m ) )
107106ralrimiva 2966 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  ( g `  m ) )
108 r19.26 3064 . . . . . . . . . . . . . . . . . 18  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( g `  m ) 
C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  <->  ( A. m  e.  ( ZZ>= `  j ) ( g `
 m )  C_  ( g `  j
)  /\  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  ( g `
 m ) ) )
10999, 107, 108sylanbrc 698 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( ( g `  m
)  C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) ) )
110 ssel2 3598 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g `  m
)  C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  ->  (
f `  m )  e.  ( g `  j
) )
111110ralimi 2952 . . . . . . . . . . . . . . . . 17  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( g `  m ) 
C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  ->  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  ( g `
 j ) )
112109, 111syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  ( g `  j ) )
113 ssel 3597 . . . . . . . . . . . . . . . . 17  |-  ( ( g `  j ) 
C_  y  ->  (
( f `  m
)  e.  ( g `
 j )  -> 
( f `  m
)  e.  y ) )
114113ralimdv 2963 . . . . . . . . . . . . . . . 16  |-  ( ( g `  j ) 
C_  y  ->  ( A. m  e.  ( ZZ>=
`  j ) ( f `  m )  e.  ( g `  j )  ->  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  y ) )
115112, 114syl5com 31 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  ( ( g `
 j )  C_  y  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  y ) )
116115anassrs 680 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  ( y  e.  J  /\  j  e.  NN ) )  ->  (
( g `  j
)  C_  y  ->  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
117116anassrs 680 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  /\  j  e.  NN )  ->  ( ( g `
 j )  C_  y  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  y ) )
118117reximdva 3017 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( E. j  e.  NN  ( g `  j )  C_  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
11967, 118syld 47 . . . . . . . . . . 11  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
120119ralrimiva 2966 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  A. y  e.  J  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
12137ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  J  e.  Top )
1223toptopon 20722 . . . . . . . . . . . 12  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
123121, 122sylib 208 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  J  e.  (TopOn `  X
) )
124 nnuz 11723 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
125 1zzd 11408 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
1  e.  ZZ )
126 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f : NN --> S )
12740ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  S  C_  X )
128126, 127fssd 6057 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f : NN --> X )
129 eqidd 2623 . . . . . . . . . . 11  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  m  e.  NN )  ->  ( f `  m
)  =  ( f `
 m ) )
130123, 124, 125, 128, 129lmbrf 21064 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
( f ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  y ) ) ) )
13156, 120, 130mpbir2and 957 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f ( ~~> t `  J ) P )
132131expr 643 . . . . . . . 8  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  f : NN --> S )  -> 
( A. n  e.  NN  ( f `  n )  e.  ( g `  n )  ->  f ( ~~> t `  J ) P ) )
133132imdistanda 729 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  ->  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
13455, 133syland 498 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  ->  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
135134eximdv 1846 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  ( E. f ( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
13652, 135mpd 15 . . . 4  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) )
1378, 136exlimddv 1863 . . 3  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) )
138137ex 450 . 2  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
1392ad2antrr 762 . . . . . 6  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  J  e.  Top )
140139, 122sylib 208 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  J  e.  (TopOn `  X ) )
141 1zzd 11408 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  1  e.  ZZ )
142 simprr 796 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  f ( ~~> t `  J ) P )
143 simprl 794 . . . . . 6  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  f : NN
--> S )
144143ffvelrnda 6359 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) )  /\  k  e.  NN )  ->  ( f `  k )  e.  S
)
145 simplr 792 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  S  C_  X
)
146124, 140, 141, 142, 144, 145lmcls 21106 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  P  e.  ( ( cls `  J
) `  S )
)
147146ex 450 . . 3  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  (
( f : NN --> S  /\  f ( ~~> t `  J ) P )  ->  P  e.  ( ( cls `  J
) `  S )
) )
148147exlimdv 1861 . 2  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( E. f ( f : NN --> S  /\  f
( ~~> t `  J
) P )  ->  P  e.  ( ( cls `  J ) `  S ) ) )
149138, 148impbid 202 1  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653    _I cid 5023   -->wf 5884   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   Topctop 20698  TopOnctopon 20715   clsccl 20822   ~~> tclm 21030   1stcc1stc 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-lm 21033  df-1stc 21242
This theorem is referenced by:  1stccnp  21265  hausmapdom  21303  1stckgen  21357  metelcls  23103
  Copyright terms: Public domain W3C validator