MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmssv Structured version   Visualization version   Unicode version

Theorem lsmssv 18058
Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v  |-  B  =  ( Base `  G
)
lsmless2.s  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
lsmssv  |-  ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  ->  ( T  .(+)  U )  C_  B )

Proof of Theorem lsmssv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmless2.v . . 3  |-  B  =  ( Base `  G
)
2 eqid 2622 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 lsmless2.s . . 3  |-  .(+)  =  (
LSSum `  G )
41, 2, 3lsmvalx 18054 . 2  |-  ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  ->  ( T  .(+)  U )  =  ran  ( x  e.  T ,  y  e.  U  |->  ( x ( +g  `  G ) y ) ) )
5 simpl1 1064 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  /\  ( x  e.  T  /\  y  e.  U
) )  ->  G  e.  Mnd )
6 simp2 1062 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  ->  T  C_  B )
76sselda 3603 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  /\  x  e.  T )  ->  x  e.  B )
87adantrr 753 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  /\  ( x  e.  T  /\  y  e.  U
) )  ->  x  e.  B )
9 simp3 1063 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  ->  U  C_  B )
109sselda 3603 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  /\  y  e.  U )  ->  y  e.  B )
1110adantrl 752 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  /\  ( x  e.  T  /\  y  e.  U
) )  ->  y  e.  B )
121, 2mndcl 17301 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
135, 8, 11, 12syl3anc 1326 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  /\  ( x  e.  T  /\  y  e.  U
) )  ->  (
x ( +g  `  G
) y )  e.  B )
1413ralrimivva 2971 . . . 4  |-  ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  ->  A. x  e.  T  A. y  e.  U  ( x
( +g  `  G ) y )  e.  B
)
15 eqid 2622 . . . . 5  |-  ( x  e.  T ,  y  e.  U  |->  ( x ( +g  `  G
) y ) )  =  ( x  e.  T ,  y  e.  U  |->  ( x ( +g  `  G ) y ) )
1615fmpt2 7237 . . . 4  |-  ( A. x  e.  T  A. y  e.  U  (
x ( +g  `  G
) y )  e.  B  <->  ( x  e.  T ,  y  e.  U  |->  ( x ( +g  `  G ) y ) ) : ( T  X.  U
) --> B )
1714, 16sylib 208 . . 3  |-  ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  ->  (
x  e.  T , 
y  e.  U  |->  ( x ( +g  `  G
) y ) ) : ( T  X.  U ) --> B )
18 frn 6053 . . 3  |-  ( ( x  e.  T , 
y  e.  U  |->  ( x ( +g  `  G
) y ) ) : ( T  X.  U ) --> B  ->  ran  ( x  e.  T ,  y  e.  U  |->  ( x ( +g  `  G ) y ) )  C_  B )
1917, 18syl 17 . 2  |-  ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  ->  ran  ( x  e.  T ,  y  e.  U  |->  ( x ( +g  `  G ) y ) )  C_  B )
204, 19eqsstrd 3639 1  |-  ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  ->  ( T  .(+)  U )  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   +g cplusg 15941   Mndcmnd 17294   LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-lsm 18051
This theorem is referenced by:  lsmsubm  18068  lsmass  18083  lsmcntzr  18093
  Copyright terms: Public domain W3C validator