MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubm Structured version   Visualization version   Unicode version

Theorem lsmsubm 18068
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p  |-  .(+)  =  (
LSSum `  G )
lsmsubg.z  |-  Z  =  (Cntz `  G )
Assertion
Ref Expression
lsmsubm  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )

Proof of Theorem lsmsubm
Dummy variables  a 
b  c  d  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 17346 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
213ad2ant1 1082 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  G  e.  Mnd )
3 eqid 2622 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
43submss 17350 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  T  C_  ( Base `  G ) )
543ad2ant1 1082 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( Base `  G ) )
63submss 17350 . . . 4  |-  ( U  e.  (SubMnd `  G
)  ->  U  C_  ( Base `  G ) )
763ad2ant2 1083 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  C_  ( Base `  G ) )
8 lsmsubg.p . . . 4  |-  .(+)  =  (
LSSum `  G )
93, 8lsmssv 18058 . . 3  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
102, 5, 7, 9syl3anc 1326 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  C_  ( Base `  G ) )
11 simp2 1062 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  U  e.  (SubMnd `  G ) )
123, 8lsmub1x 18061 . . . 4  |-  ( ( T  C_  ( Base `  G )  /\  U  e.  (SubMnd `  G )
)  ->  T  C_  ( T  .(+)  U ) )
135, 11, 12syl2anc 693 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  T  C_  ( T  .(+)  U ) )
14 eqid 2622 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
1514subm0cl 17352 . . . 4  |-  ( T  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  T
)
16153ad2ant1 1082 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( 0g `  G )  e.  T
)
1713, 16sseldd 3604 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( 0g `  G )  e.  ( T  .(+)  U )
)
18 eqid 2622 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
193, 18, 8lsmelvalx 18055 . . . . . 6  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. c  e.  U  x  =  ( a
( +g  `  G ) c ) ) )
202, 5, 7, 19syl3anc 1326 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( x  e.  ( T  .(+)  U )  <->  E. a  e.  T  E. c  e.  U  x  =  ( a
( +g  `  G ) c ) ) )
213, 18, 8lsmelvalx 18055 . . . . . 6  |-  ( ( G  e.  Mnd  /\  T  C_  ( Base `  G
)  /\  U  C_  ( Base `  G ) )  ->  ( y  e.  ( T  .(+)  U )  <->  E. b  e.  T  E. d  e.  U  y  =  ( b
( +g  `  G ) d ) ) )
222, 5, 7, 21syl3anc 1326 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( y  e.  ( T  .(+)  U )  <->  E. b  e.  T  E. d  e.  U  y  =  ( b
( +g  `  G ) d ) ) )
2320, 22anbi12d 747 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U ) )  <->  ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G
) d ) ) ) )
24 reeanv 3107 . . . . 5  |-  ( E. a  e.  T  E. b  e.  T  ( E. c  e.  U  x  =  ( a
( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  <->  ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) ) )
25 reeanv 3107 . . . . . . 7  |-  ( E. c  e.  U  E. d  e.  U  (
x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  <->  ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) ) )
262adantr 481 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  G  e.  Mnd )
275adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  C_  ( Base `  G
) )
28 simprll 802 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  a  e.  T )
2927, 28sseldd 3604 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  a  e.  ( Base `  G
) )
30 simprlr 803 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  T )
3127, 30sseldd 3604 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  ( Base `  G
) )
327adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  U  C_  ( Base `  G
) )
33 simprrl 804 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  c  e.  U )
3432, 33sseldd 3604 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  c  e.  ( Base `  G
) )
35 simprrr 805 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  d  e.  U )
3632, 35sseldd 3604 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  d  e.  ( Base `  G
) )
37 simpl3 1066 . . . . . . . . . . . . . 14  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  C_  ( Z `  U
) )
3837, 30sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  b  e.  ( Z `  U
) )
39 lsmsubg.z . . . . . . . . . . . . . 14  |-  Z  =  (Cntz `  G )
4018, 39cntzi 17762 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( Z `
 U )  /\  c  e.  U )  ->  ( b ( +g  `  G ) c )  =  ( c ( +g  `  G ) b ) )
4138, 33, 40syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
b ( +g  `  G
) c )  =  ( c ( +g  `  G ) b ) )
423, 18, 26, 29, 31, 34, 36, 41mnd4g 17307 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) b ) ( +g  `  G
) ( c ( +g  `  G ) d ) )  =  ( ( a ( +g  `  G ) c ) ( +g  `  G ) ( b ( +g  `  G
) d ) ) )
43 simpl1 1064 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  T  e.  (SubMnd `  G )
)
4418submcl 17353 . . . . . . . . . . . . 13  |-  ( ( T  e.  (SubMnd `  G )  /\  a  e.  T  /\  b  e.  T )  ->  (
a ( +g  `  G
) b )  e.  T )
4543, 28, 30, 44syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
a ( +g  `  G
) b )  e.  T )
46 simpl2 1065 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  U  e.  (SubMnd `  G )
)
4718submcl 17353 . . . . . . . . . . . . 13  |-  ( ( U  e.  (SubMnd `  G )  /\  c  e.  U  /\  d  e.  U )  ->  (
c ( +g  `  G
) d )  e.  U )
4846, 33, 35, 47syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
c ( +g  `  G
) d )  e.  U )
493, 18, 8lsmelvalix 18056 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) )  /\  (
( a ( +g  `  G ) b )  e.  T  /\  (
c ( +g  `  G
) d )  e.  U ) )  -> 
( ( a ( +g  `  G ) b ) ( +g  `  G ) ( c ( +g  `  G
) d ) )  e.  ( T  .(+)  U ) )
5026, 27, 32, 45, 48, 49syl32anc 1334 . . . . . . . . . . 11  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) b ) ( +g  `  G
) ( c ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) )
5142, 50eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( a ( +g  `  G ) c ) ( +g  `  G
) ( b ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) )
52 oveq12 6659 . . . . . . . . . . 11  |-  ( ( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  =  ( ( a ( +g  `  G
) c ) ( +g  `  G ) ( b ( +g  `  G ) d ) ) )
5352eleq1d 2686 . . . . . . . . . 10  |-  ( ( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )  <->  ( ( a ( +g  `  G ) c ) ( +g  `  G
) ( b ( +g  `  G ) d ) )  e.  ( T  .(+)  U ) ) )
5451, 53syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( ( a  e.  T  /\  b  e.  T )  /\  (
c  e.  U  /\  d  e.  U )
) )  ->  (
( x  =  ( a ( +g  `  G
) c )  /\  y  =  ( b
( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
5554anassrs 680 . . . . . . . 8  |-  ( ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `  U
) )  /\  (
a  e.  T  /\  b  e.  T )
)  /\  ( c  e.  U  /\  d  e.  U ) )  -> 
( ( x  =  ( a ( +g  `  G ) c )  /\  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5655rexlimdvva 3038 . . . . . . 7  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  T ) )  -> 
( E. c  e.  U  E. d  e.  U  ( x  =  ( a ( +g  `  G ) c )  /\  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5725, 56syl5bir 233 . . . . . 6  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  /\  ( a  e.  T  /\  b  e.  T ) )  -> 
( ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G
) d ) )  ->  ( x ( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
5857rexlimdvva 3038 . . . . 5  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( E. a  e.  T  E. b  e.  T  ( E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
5924, 58syl5bir 233 . . . 4  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( E. a  e.  T  E. c  e.  U  x  =  ( a ( +g  `  G ) c )  /\  E. b  e.  T  E. d  e.  U  y  =  ( b ( +g  `  G ) d ) )  -> 
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) )
6023, 59sylbid 230 . . 3  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U ) )  ->  ( x
( +g  `  G ) y )  e.  ( T  .(+)  U )
) )
6160ralrimivv 2970 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  A. x  e.  ( T  .(+)  U ) A. y  e.  ( T  .(+)  U ) ( x ( +g  `  G
) y )  e.  ( T  .(+)  U ) )
623, 14, 18issubm 17347 . . 3  |-  ( G  e.  Mnd  ->  (
( T  .(+)  U )  e.  (SubMnd `  G
)  <->  ( ( T 
.(+)  U )  C_  ( Base `  G )  /\  ( 0g `  G )  e.  ( T  .(+)  U )  /\  A. x  e.  ( T  .(+)  U ) A. y  e.  ( T  .(+)  U )
( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) ) )
632, 62syl 17 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( ( T 
.(+)  U )  e.  (SubMnd `  G )  <->  ( ( T  .(+)  U )  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  ( T 
.(+)  U )  /\  A. x  e.  ( T  .(+) 
U ) A. y  e.  ( T  .(+)  U ) ( x ( +g  `  G ) y )  e.  ( T  .(+)  U ) ) ) )
6410, 17, 61, 63mpbir3and 1245 1  |-  ( ( T  e.  (SubMnd `  G )  /\  U  e.  (SubMnd `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubMnd `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294  SubMndcsubmnd 17334  Cntzccntz 17748   LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-lsm 18051
This theorem is referenced by:  lsmsubg  18069
  Copyright terms: Public domain W3C validator