MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom2 Structured version   Visualization version   Unicode version

Theorem mapdom2 8131
Description: Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
mapdom2  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )

Proof of Theorem mapdom2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  C  =  (/) )
21oveq1d 6665 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  =  ( (/)  ^m  A ) )
3 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  -.  ( A  =  (/)  /\  C  =  (/) ) )
4 idd 24 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( A  =  (/)  ->  A  =  (/) ) )
54, 1jctird 567 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( A  =  (/)  ->  ( A  =  (/)  /\  C  =  (/) ) ) )
63, 5mtod 189 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  -.  A  =  (/) )
76neqned 2801 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  A  =/=  (/) )
8 map0b 7896 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )
97, 8syl 17 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( (/) 
^m  A )  =  (/) )
102, 9eqtrd 2656 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  =  (/) )
11 ovex 6678 . . . . . . 7  |-  ( C  ^m  B )  e. 
_V
12110dom 8090 . . . . . 6  |-  (/)  ~<_  ( C  ^m  B )
1310, 12syl6eqbr 4692 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
14 simpll 790 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  A  ~<_  B )
15 reldom 7961 . . . . . . . . . . 11  |-  Rel  ~<_
1615brrelex2i 5159 . . . . . . . . . 10  |-  ( A  ~<_  B  ->  B  e.  _V )
1716ad2antrr 762 . . . . . . . . 9  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  B  e.  _V )
18 domeng 7969 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
1917, 18syl 17 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
2014, 19mpbid 222 . . . . . . 7  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  E. x ( A  ~~  x  /\  x  C_  B
) )
21 enrefg 7987 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  C  ~~  C )
2221ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  ~~  C
)
23 simprrl 804 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  A  ~~  x
)
24 mapen 8124 . . . . . . . . . . 11  |-  ( ( C  ~~  C  /\  A  ~~  x )  -> 
( C  ^m  A
)  ~~  ( C  ^m  x ) )
2522, 23, 24syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  A )  ~~  ( C  ^m  x ) )
26 ovexd 6680 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  e.  _V )
27 ovexd 6680 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( B  \  x
) )  e.  _V )
28 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  =/=  (/) )
29 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  e.  _V )
3016ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  B  e.  _V )
31 difexg 4808 . . . . . . . . . . . . . . 15  |-  ( B  e.  _V  ->  ( B  \  x )  e. 
_V )
3230, 31syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( B  \  x )  e.  _V )
33 map0g 7897 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( ( C  ^m  ( B  \  x
) )  =  (/)  <->  ( C  =  (/)  /\  ( B  \  x )  =/=  (/) ) ) )
34 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( C  =  (/)  /\  ( B  \  x )  =/=  (/) )  ->  C  =  (/) )
3533, 34syl6bi 243 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( ( C  ^m  ( B  \  x
) )  =  (/)  ->  C  =  (/) ) )
3635necon3d 2815 . . . . . . . . . . . . . 14  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( C  =/=  (/)  ->  ( C  ^m  ( B  \  x ) )  =/=  (/) ) )
3729, 32, 36syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  =/=  (/)  ->  ( C  ^m  ( B  \  x
) )  =/=  (/) ) )
3828, 37mpd 15 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( B  \  x
) )  =/=  (/) )
39 xpdom3 8058 . . . . . . . . . . . 12  |-  ( ( ( C  ^m  x
)  e.  _V  /\  ( C  ^m  ( B  \  x ) )  e.  _V  /\  ( C  ^m  ( B  \  x ) )  =/=  (/) )  ->  ( C  ^m  x )  ~<_  ( ( C  ^m  x
)  X.  ( C  ^m  ( B  \  x ) ) ) )
4026, 27, 38, 39syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  ~<_  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) ) )
41 vex 3203 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
4241a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  x  e.  _V )
43 disjdif 4040 . . . . . . . . . . . . . . 15  |-  ( x  i^i  ( B  \  x ) )  =  (/)
4443a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( x  i^i  ( B  \  x
) )  =  (/) )
45 mapunen 8129 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  _V  /\  ( B  \  x
)  e.  _V  /\  C  e.  _V )  /\  ( x  i^i  ( B  \  x ) )  =  (/) )  ->  ( C  ^m  ( x  u.  ( B  \  x
) ) )  ~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) ) )
4642, 32, 29, 44, 45syl31anc 1329 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( x  u.  ( B  \  x ) ) )  ~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) ) )
4746ensymd 8007 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  ( x  u.  ( B  \  x
) ) ) )
48 simprrr 805 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  x  C_  B
)
49 undif 4049 . . . . . . . . . . . . . 14  |-  ( x 
C_  B  <->  ( x  u.  ( B  \  x
) )  =  B )
5048, 49sylib 208 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( x  u.  ( B  \  x
) )  =  B )
5150oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( x  u.  ( B  \  x ) ) )  =  ( C  ^m  B ) )
5247, 51breqtrd 4679 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  B ) )
53 domentr 8015 . . . . . . . . . . 11  |-  ( ( ( C  ^m  x
)  ~<_  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  /\  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) )  ~~  ( C  ^m  B ) )  ->  ( C  ^m  x )  ~<_  ( C  ^m  B ) )
5440, 52, 53syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  ~<_  ( C  ^m  B ) )
55 endomtr 8014 . . . . . . . . . 10  |-  ( ( ( C  ^m  A
)  ~~  ( C  ^m  x )  /\  ( C  ^m  x )  ~<_  ( C  ^m  B ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
5625, 54, 55syl2anc 693 . . . . . . . . 9  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
5756expr 643 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( ( A  ~~  x  /\  x  C_  B
)  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) ) )
5857exlimdv 1861 . . . . . . 7  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( E. x ( A  ~~  x  /\  x  C_  B )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) ) )
5920, 58mpd 15 . . . . . 6  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )
6059adantlr 751 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =/=  (/) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6113, 60pm2.61dane 2881 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6261an32s 846 . . 3  |-  ( ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  e.  _V )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6362ex 450 . 2  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  e.  _V  ->  ( C  ^m  A
)  ~<_  ( C  ^m  B ) ) )
64 reldmmap 7866 . . . 4  |-  Rel  dom  ^m
6564ovprc1 6684 . . 3  |-  ( -.  C  e.  _V  ->  ( C  ^m  A )  =  (/) )
6665, 12syl6eqbr 4692 . 2  |-  ( -.  C  e.  _V  ->  ( C  ^m  A )  ~<_  ( C  ^m  B
) )
6763, 66pm2.61d1 171 1  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    X. cxp 5112  (class class class)co 6650    ^m cmap 7857    ~~ cen 7952    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957
This theorem is referenced by:  mapdom3  8132  cfpwsdom  9406  hauspwdom  21304
  Copyright terms: Public domain W3C validator