| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapdom3 | Structured version Visualization version Unicode version | ||
| Description: Set exponentiation dominates the mantissa. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdom3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 3931 |
. . 3
| |
| 2 | oveq1 6657 |
. . . . . . . . . 10
| |
| 3 | id 22 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | breq12d 4666 |
. . . . . . . . 9
|
| 5 | vex 3203 |
. . . . . . . . . 10
| |
| 6 | vex 3203 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | mapsnen 8035 |
. . . . . . . . 9
|
| 8 | 4, 7 | vtoclg 3266 |
. . . . . . . 8
|
| 9 | 8 | 3ad2ant1 1082 |
. . . . . . 7
|
| 10 | 9 | ensymd 8007 |
. . . . . 6
|
| 11 | simp2 1062 |
. . . . . . . 8
| |
| 12 | simp3 1063 |
. . . . . . . . 9
| |
| 13 | 12 | snssd 4340 |
. . . . . . . 8
|
| 14 | ssdomg 8001 |
. . . . . . . 8
| |
| 15 | 11, 13, 14 | sylc 65 |
. . . . . . 7
|
| 16 | 6 | snnz 4309 |
. . . . . . . 8
|
| 17 | simpl 473 |
. . . . . . . . 9
| |
| 18 | 17 | necon3ai 2819 |
. . . . . . . 8
|
| 19 | 16, 18 | ax-mp 5 |
. . . . . . 7
|
| 20 | mapdom2 8131 |
. . . . . . 7
| |
| 21 | 15, 19, 20 | sylancl 694 |
. . . . . 6
|
| 22 | endomtr 8014 |
. . . . . 6
| |
| 23 | 10, 21, 22 | syl2anc 693 |
. . . . 5
|
| 24 | 23 | 3expia 1267 |
. . . 4
|
| 25 | 24 | exlimdv 1861 |
. . 3
|
| 26 | 1, 25 | syl5bi 232 |
. 2
|
| 27 | 26 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 |
| This theorem is referenced by: infmap2 9040 |
| Copyright terms: Public domain | W3C validator |