![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version Unicode version |
Description: Symmetry of equinumerosity. Deduction form of ensym 8005. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ensymd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ensym 8005 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-er 7742 df-en 7956 |
This theorem is referenced by: f1imaeng 8016 f1imaen2g 8017 en2sn 8037 xpdom3 8058 omxpen 8062 mapdom2 8131 mapdom3 8132 limensuci 8136 phplem4 8142 php 8144 unxpdom2 8168 sucxpdom 8169 fiint 8237 marypha1lem 8339 infdifsn 8554 cnfcom2lem 8598 cardidm 8785 cardnueq0 8790 carden2a 8792 card1 8794 cardsdomel 8800 isinffi 8818 en2eqpr 8830 infxpenlem 8836 infxpidm2 8840 alephnbtwn2 8895 alephsucdom 8902 mappwen 8935 finnisoeu 8936 cdaen 8995 cda1en 8997 cdaassen 9004 xpcdaen 9005 infcda1 9015 pwcda1 9016 onacda 9019 cardacda 9020 cdanum 9021 ficardun 9024 pwsdompw 9026 infdif2 9032 infxp 9037 ackbij1lem5 9046 cfss 9087 ominf4 9134 isfin4-3 9137 fin23lem27 9150 alephsuc3 9402 canthp1lem1 9474 gchcda1 9478 gchinf 9479 pwfseqlem5 9485 pwcdandom 9489 gchcdaidm 9490 gchxpidm 9491 gchhar 9501 inttsk 9596 tskcard 9603 r1tskina 9604 tskuni 9605 hashkf 13119 fz1isolem 13245 isercolllem2 14396 summolem2a 14446 summolem2 14447 zsum 14449 prodmolem2a 14664 prodmolem2 14665 zprod 14667 4sqlem11 15659 mreexexd 16308 mreexexdOLD 16309 orbsta2 17747 psgnunilem1 17913 frlmisfrlm 20187 frlmiscvec 20188 ovoliunlem1 23270 rabfodom 29344 padct 29497 lindsdom 33403 matunitlindflem2 33406 heicant 33444 mblfinlem1 33446 eldioph2lem1 37323 isnumbasgrplem3 37675 fiuneneq 37775 enrelmap 38291 enmappw 38293 |
Copyright terms: Public domain | W3C validator |