![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version Unicode version |
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
endomtr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 7982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | domtr 8009 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan 488 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-f1o 5895 df-en 7956 df-dom 7957 |
This theorem is referenced by: cnvct 8033 undom 8048 xpdom1g 8057 xpdom3 8058 domunsncan 8060 domsdomtr 8095 domen1 8102 mapdom1 8125 mapdom2 8131 mapdom3 8132 php 8144 onomeneq 8150 sucdom2 8156 hartogslem1 8447 harcard 8804 infxpenlem 8836 infpwfien 8885 alephsucdom 8902 mappwen 8935 dfac12lem2 8966 cdalepw 9018 fictb 9067 cfflb 9081 canthp1lem1 9474 pwfseqlem5 9485 pwxpndom2 9487 pwcdandom 9489 gchxpidm 9491 gchhar 9501 tskinf 9591 inar1 9597 gruina 9640 rexpen 14957 mreexdomd 16310 hauspwdom 21304 rectbntr0 22635 rabfodom 29344 snct 29491 dya2iocct 30342 finminlem 32312 lindsdom 33403 poimirlem26 33435 heiborlem3 33612 pellexlem4 37396 pellexlem5 37397 mpct 39393 aacllem 42547 |
Copyright terms: Public domain | W3C validator |