Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metideq Structured version   Visualization version   Unicode version

Theorem metideq 29936
Description: Basic property of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metideq  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D E )  =  ( B D F ) )

Proof of Theorem metideq
StepHypRef Expression
1 simpl 473 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  D  e.  (PsMet `  X ) )
2 metidss 29934 . . . . . . . . 9  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  C_  ( X  X.  X ) )
3 dmss 5323 . . . . . . . . 9  |-  ( (~Met `  D )  C_  ( X  X.  X )  ->  dom  (~Met `  D )  C_ 
dom  ( X  X.  X ) )
42, 3syl 17 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  dom  (~Met `  D )  C_  dom  ( X  X.  X
) )
5 dmxpid 5345 . . . . . . . 8  |-  dom  ( X  X.  X )  =  X
64, 5syl6sseq 3651 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  dom  (~Met `  D )  C_  X
)
71, 6syl 17 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  dom  (~Met `  D )  C_  X
)
8 xpss 5226 . . . . . . . . . 10  |-  ( X  X.  X )  C_  ( _V  X.  _V )
92, 8syl6ss 3615 . . . . . . . . 9  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  C_  ( _V  X.  _V ) )
10 df-rel 5121 . . . . . . . . 9  |-  ( Rel  (~Met `  D )  <->  (~Met `  D )  C_  ( _V  X.  _V ) )
119, 10sylibr 224 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  Rel  (~Met `  D ) )
121, 11syl 17 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  Rel  (~Met `  D ) )
13 simprl 794 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  A (~Met `  D ) B )
14 releldm 5358 . . . . . . 7  |-  ( ( Rel  (~Met `  D
)  /\  A (~Met `  D ) B )  ->  A  e.  dom  (~Met `  D ) )
1512, 13, 14syl2anc 693 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  A  e.  dom  (~Met `  D )
)
167, 15sseldd 3604 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  A  e.  X )
17 simprr 796 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  E (~Met `  D ) F )
18 releldm 5358 . . . . . . 7  |-  ( ( Rel  (~Met `  D
)  /\  E (~Met `  D ) F )  ->  E  e.  dom  (~Met `  D ) )
1912, 17, 18syl2anc 693 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  E  e.  dom  (~Met `  D )
)
207, 19sseldd 3604 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  E  e.  X )
21 psmetsym 22115 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  E  e.  X )  ->  ( A D E )  =  ( E D A ) )
221, 16, 20, 21syl3anc 1326 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D E )  =  ( E D A ) )
23 psmetf 22111 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
2423fovrnda 6805 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( E  e.  X  /\  A  e.  X )
)  ->  ( E D A )  e.  RR* )
251, 20, 16, 24syl12anc 1324 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( E D A )  e.  RR* )
2622, 25eqeltrd 2701 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D E )  e.  RR* )
27 rnss 5354 . . . . . . . 8  |-  ( (~Met `  D )  C_  ( X  X.  X )  ->  ran  (~Met `  D )  C_ 
ran  ( X  X.  X ) )
282, 27syl 17 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  ran  (~Met `  D )  C_  ran  ( X  X.  X
) )
29 rnxpid 5567 . . . . . . 7  |-  ran  ( X  X.  X )  =  X
3028, 29syl6sseq 3651 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ran  (~Met `  D )  C_  X
)
311, 30syl 17 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ran  (~Met `  D )  C_  X
)
32 relelrn 5359 . . . . . 6  |-  ( ( Rel  (~Met `  D
)  /\  A (~Met `  D ) B )  ->  B  e.  ran  (~Met `  D ) )
3312, 13, 32syl2anc 693 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  B  e.  ran  (~Met `  D )
)
3431, 33sseldd 3604 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  B  e.  X )
3523fovrnda 6805 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( B  e.  X  /\  E  e.  X )
)  ->  ( B D E )  e.  RR* )
361, 34, 20, 35syl12anc 1324 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( B D E )  e.  RR* )
37 relelrn 5359 . . . . . . 7  |-  ( ( Rel  (~Met `  D
)  /\  E (~Met `  D ) F )  ->  F  e.  ran  (~Met `  D ) )
3812, 17, 37syl2anc 693 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  F  e.  ran  (~Met `  D )
)
3931, 38sseldd 3604 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  F  e.  X )
40 psmetsym 22115 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  F  e.  X  /\  B  e.  X )  ->  ( F D B )  =  ( B D F ) )
411, 39, 34, 40syl3anc 1326 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( F D B )  =  ( B D F ) )
4223fovrnda 6805 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( F  e.  X  /\  B  e.  X )
)  ->  ( F D B )  e.  RR* )
431, 39, 34, 42syl12anc 1324 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( F D B )  e.  RR* )
4441, 43eqeltrrd 2702 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( B D F )  e.  RR* )
45 psmettri2 22114 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( B  e.  X  /\  A  e.  X  /\  E  e.  X )
)  ->  ( A D E )  <_  (
( B D A ) +e ( B D E ) ) )
461, 34, 16, 20, 45syl13anc 1328 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D E )  <_  (
( B D A ) +e ( B D E ) ) )
47 psmetsym 22115 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
481, 16, 34, 47syl3anc 1326 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D B )  =  ( B D A ) )
4916, 34jca 554 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A  e.  X  /\  B  e.  X ) )
50 metidv 29935 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A
(~Met `  D ) B 
<->  ( A D B )  =  0 ) )
5150biimpa 501 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X )
)  /\  A (~Met `  D ) B )  ->  ( A D B )  =  0 )
521, 49, 13, 51syl21anc 1325 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D B )  =  0 )
5348, 52eqtr3d 2658 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( B D A )  =  0 )
5453oveq1d 6665 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( B D A ) +e ( B D E ) )  =  ( 0 +e
( B D E ) ) )
55 xaddid2 12073 . . . . . 6  |-  ( ( B D E )  e.  RR*  ->  ( 0 +e ( B D E ) )  =  ( B D E ) )
5636, 55syl 17 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( 0 +e ( B D E ) )  =  ( B D E ) )
5754, 56eqtrd 2656 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( B D A ) +e ( B D E ) )  =  ( B D E ) )
5846, 57breqtrd 4679 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D E )  <_  ( B D E ) )
59 psmettri2 22114 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( F  e.  X  /\  B  e.  X  /\  E  e.  X )
)  ->  ( B D E )  <_  (
( F D B ) +e ( F D E ) ) )
601, 39, 34, 20, 59syl13anc 1328 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( B D E )  <_  (
( F D B ) +e ( F D E ) ) )
61 psmetsym 22115 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  F  e.  X  /\  E  e.  X )  ->  ( F D E )  =  ( E D F ) )
621, 39, 20, 61syl3anc 1326 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( F D E )  =  ( E D F ) )
6320, 39jca 554 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( E  e.  X  /\  F  e.  X ) )
64 metidv 29935 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  ( E  e.  X  /\  F  e.  X )
)  ->  ( E
(~Met `  D ) F 
<->  ( E D F )  =  0 ) )
6564biimpa 501 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  ( E  e.  X  /\  F  e.  X )
)  /\  E (~Met `  D ) F )  ->  ( E D F )  =  0 )
661, 63, 17, 65syl21anc 1325 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( E D F )  =  0 )
6762, 66eqtrd 2656 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( F D E )  =  0 )
6867oveq2d 6666 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( F D B ) +e ( F D E ) )  =  ( ( F D B ) +e 0 ) )
69 xaddid1 12072 . . . . . 6  |-  ( ( F D B )  e.  RR*  ->  ( ( F D B ) +e 0 )  =  ( F D B ) )
7043, 69syl 17 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( F D B ) +e 0 )  =  ( F D B ) )
7168, 70, 413eqtrd 2660 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( F D B ) +e ( F D E ) )  =  ( B D F ) )
7260, 71breqtrd 4679 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( B D E )  <_  ( B D F ) )
7326, 36, 44, 58, 72xrletrd 11993 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D E )  <_  ( B D F ) )
7423fovrnda 6805 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  F  e.  X )
)  ->  ( A D F )  e.  RR* )
751, 16, 39, 74syl12anc 1324 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D F )  e.  RR* )
76 psmettri2 22114 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  F  e.  X )
)  ->  ( B D F )  <_  (
( A D B ) +e ( A D F ) ) )
771, 16, 34, 39, 76syl13anc 1328 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( B D F )  <_  (
( A D B ) +e ( A D F ) ) )
7852oveq1d 6665 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( A D B ) +e ( A D F ) )  =  ( 0 +e
( A D F ) ) )
79 xaddid2 12073 . . . . . 6  |-  ( ( A D F )  e.  RR*  ->  ( 0 +e ( A D F ) )  =  ( A D F ) )
8075, 79syl 17 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( 0 +e ( A D F ) )  =  ( A D F ) )
8178, 80eqtrd 2656 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( A D B ) +e ( A D F ) )  =  ( A D F ) )
8277, 81breqtrd 4679 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( B D F )  <_  ( A D F ) )
83 psmettri2 22114 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( E  e.  X  /\  A  e.  X  /\  F  e.  X )
)  ->  ( A D F )  <_  (
( E D A ) +e ( E D F ) ) )
841, 20, 16, 39, 83syl13anc 1328 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D F )  <_  (
( E D A ) +e ( E D F ) ) )
85 xaddid1 12072 . . . . . 6  |-  ( ( E D A )  e.  RR*  ->  ( ( E D A ) +e 0 )  =  ( E D A ) )
8625, 85syl 17 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( E D A ) +e 0 )  =  ( E D A ) )
8766oveq2d 6666 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( E D A ) +e ( E D F ) )  =  ( ( E D A ) +e 0 ) )
8886, 87, 223eqtr4d 2666 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( E D A ) +e ( E D F ) )  =  ( A D E ) )
8984, 88breqtrd 4679 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D F )  <_  ( A D E ) )
9044, 75, 26, 82, 89xrletrd 11993 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( B D F )  <_  ( A D E ) )
91 xrletri3 11985 . . 3  |-  ( ( ( A D E )  e.  RR*  /\  ( B D F )  e. 
RR* )  ->  (
( A D E )  =  ( B D F )  <->  ( ( A D E )  <_ 
( B D F )  /\  ( B D F )  <_ 
( A D E ) ) ) )
9226, 44, 91syl2anc 693 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( ( A D E )  =  ( B D F )  <->  ( ( A D E )  <_ 
( B D F )  /\  ( B D F )  <_ 
( A D E ) ) ) )
9373, 90, 92mpbir2and 957 1  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D ) B  /\  E (~Met `  D ) F ) )  ->  ( A D E )  =  ( B D F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   0cc0 9936   RR*cxr 10073    <_ cle 10075   +ecxad 11944  PsMetcpsmet 19730  ~Metcmetid 29929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-xadd 11947  df-psmet 19738  df-metid 29931
This theorem is referenced by:  pstmfval  29939
  Copyright terms: Public domain W3C validator