| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpccofval | Structured version Visualization version Unicode version | ||
| Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpccofval.t |
|
| xpccofval.b |
|
| xpccofval.k |
|
| xpccofval.o1 |
|
| xpccofval.o2 |
|
| xpccofval.o |
|
| Ref | Expression |
|---|---|
| xpccofval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpccofval.t |
. . . 4
| |
| 2 | eqid 2622 |
. . . 4
| |
| 3 | eqid 2622 |
. . . 4
| |
| 4 | eqid 2622 |
. . . 4
| |
| 5 | eqid 2622 |
. . . 4
| |
| 6 | xpccofval.o1 |
. . . 4
| |
| 7 | xpccofval.o2 |
. . . 4
| |
| 8 | simpl 473 |
. . . 4
| |
| 9 | simpr 477 |
. . . 4
| |
| 10 | xpccofval.b |
. . . . . 6
| |
| 11 | 1, 2, 3 | xpcbas 16818 |
. . . . . 6
|
| 12 | 10, 11 | eqtr4i 2647 |
. . . . 5
|
| 13 | 12 | a1i 11 |
. . . 4
|
| 14 | xpccofval.k |
. . . . . 6
| |
| 15 | 1, 10, 4, 5, 14 | xpchomfval 16819 |
. . . . 5
|
| 16 | 15 | a1i 11 |
. . . 4
|
| 17 | eqidd 2623 |
. . . 4
| |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 16, 17 | xpcval 16817 |
. . 3
|
| 19 | catstr 16617 |
. . 3
| |
| 20 | ccoid 16077 |
. . 3
| |
| 21 | snsstp3 4349 |
. . 3
| |
| 22 | fvex 6201 |
. . . . . . 7
| |
| 23 | 10, 22 | eqeltri 2697 |
. . . . . 6
|
| 24 | 23, 23 | xpex 6962 |
. . . . 5
|
| 25 | 24, 23 | mpt2ex 7247 |
. . . 4
|
| 26 | 25 | a1i 11 |
. . 3
|
| 27 | xpccofval.o |
. . 3
| |
| 28 | 18, 19, 20, 21, 26, 27 | strfv3 15908 |
. 2
|
| 29 | mpt20 6725 |
. . . 4
| |
| 30 | 29 | eqcomi 2631 |
. . 3
|
| 31 | fnxpc 16816 |
. . . . . . . 8
| |
| 32 | fndm 5990 |
. . . . . . . 8
| |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . 7
|
| 34 | 33 | ndmov 6818 |
. . . . . 6
|
| 35 | 1, 34 | syl5eq 2668 |
. . . . 5
|
| 36 | 35 | fveq2d 6195 |
. . . 4
|
| 37 | 20 | str0 15911 |
. . . 4
|
| 38 | 36, 27, 37 | 3eqtr4g 2681 |
. . 3
|
| 39 | 35 | fveq2d 6195 |
. . . . . . 7
|
| 40 | base0 15912 |
. . . . . . 7
| |
| 41 | 39, 10, 40 | 3eqtr4g 2681 |
. . . . . 6
|
| 42 | 41 | xpeq2d 5139 |
. . . . 5
|
| 43 | xp0 5552 |
. . . . 5
| |
| 44 | 42, 43 | syl6eq 2672 |
. . . 4
|
| 45 | eqidd 2623 |
. . . 4
| |
| 46 | 44, 41, 45 | mpt2eq123dv 6717 |
. . 3
|
| 47 | 30, 38, 46 | 3eqtr4a 2682 |
. 2
|
| 48 | 28, 47 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-hom 15966 df-cco 15967 df-xpc 16812 |
| This theorem is referenced by: xpcco 16823 |
| Copyright terms: Public domain | W3C validator |