Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsrabdioph Structured version   Visualization version   Unicode version

Theorem dvdsrabdioph 37374
Description: Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
dvdsrabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  e.  (Dioph `  N
) )
Distinct variable group:    t, N
Allowed substitution hints:    A( t)    B( t)

Proof of Theorem dvdsrabdioph
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabdiophlem1 37365 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) A  e.  ZZ )
2 rabdiophlem1 37365 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ )
3 divides 14985 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  E. a  e.  ZZ  (
a  x.  A )  =  B ) )
4 oveq1 6657 . . . . . . . . 9  |-  ( a  =  b  ->  (
a  x.  A )  =  ( b  x.  A ) )
54eqeq1d 2624 . . . . . . . 8  |-  ( a  =  b  ->  (
( a  x.  A
)  =  B  <->  ( b  x.  A )  =  B ) )
6 oveq1 6657 . . . . . . . . 9  |-  ( a  =  -u b  ->  (
a  x.  A )  =  ( -u b  x.  A ) )
76eqeq1d 2624 . . . . . . . 8  |-  ( a  =  -u b  ->  (
( a  x.  A
)  =  B  <->  ( -u b  x.  A )  =  B ) )
85, 7rexzrexnn0 37368 . . . . . . 7  |-  ( E. a  e.  ZZ  (
a  x.  A )  =  B  <->  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) )
93, 8syl6bb 276 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  E. b  e.  NN0  (
( b  x.  A
)  =  B  \/  ( -u b  x.  A
)  =  B ) ) )
109ralimi 2952 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) ( A  ||  B  <->  E. b  e.  NN0  (
( b  x.  A
)  =  B  \/  ( -u b  x.  A
)  =  B ) ) )
11 r19.26 3064 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  <->  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) A  e.  ZZ  /\  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ ) )
12 rabbi 3120 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A 
||  B  <->  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) )  <->  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
1310, 11, 123imtr3i 280 . . . 4  |-  ( ( A. t  e.  ( NN0  ^m  ( 1 ... N ) ) A  e.  ZZ  /\  A. t  e.  ( NN0 
^m  ( 1 ... N ) ) B  e.  ZZ )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
141, 2, 13syl2an 494 . . 3  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
15143adant1 1079 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
16 nfcv 2764 . . . 4  |-  F/_ t
( NN0  ^m  (
1 ... N ) )
17 nfcv 2764 . . . 4  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
18 nfv 1843 . . . 4  |-  F/ a E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )
19 nfcv 2764 . . . . 5  |-  F/_ t NN0
20 nfcv 2764 . . . . . . . 8  |-  F/_ t
b
21 nfcv 2764 . . . . . . . 8  |-  F/_ t  x.
22 nfcsb1v 3549 . . . . . . . 8  |-  F/_ t [_ a  /  t ]_ A
2320, 21, 22nfov 6676 . . . . . . 7  |-  F/_ t
( b  x.  [_ a  /  t ]_ A
)
24 nfcsb1v 3549 . . . . . . 7  |-  F/_ t [_ a  /  t ]_ B
2523, 24nfeq 2776 . . . . . 6  |-  F/ t ( b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
26 nfcv 2764 . . . . . . . 8  |-  F/_ t -u b
2726, 21, 22nfov 6676 . . . . . . 7  |-  F/_ t
( -u b  x.  [_ a  /  t ]_ A
)
2827, 24nfeq 2776 . . . . . 6  |-  F/ t ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
2925, 28nfor 1834 . . . . 5  |-  F/ t ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)
3019, 29nfrex 3007 . . . 4  |-  F/ t E. b  e.  NN0  ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)
31 csbeq1a 3542 . . . . . . . 8  |-  ( t  =  a  ->  A  =  [_ a  /  t ]_ A )
3231oveq2d 6666 . . . . . . 7  |-  ( t  =  a  ->  (
b  x.  A )  =  ( b  x. 
[_ a  /  t ]_ A ) )
33 csbeq1a 3542 . . . . . . 7  |-  ( t  =  a  ->  B  =  [_ a  /  t ]_ B )
3432, 33eqeq12d 2637 . . . . . 6  |-  ( t  =  a  ->  (
( b  x.  A
)  =  B  <->  ( b  x.  [_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) )
3531oveq2d 6666 . . . . . . 7  |-  ( t  =  a  ->  ( -u b  x.  A )  =  ( -u b  x.  [_ a  /  t ]_ A ) )
3635, 33eqeq12d 2637 . . . . . 6  |-  ( t  =  a  ->  (
( -u b  x.  A
)  =  B  <->  ( -u b  x.  [_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) )
3734, 36orbi12d 746 . . . . 5  |-  ( t  =  a  ->  (
( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )  <->  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) ) )
3837rexbidv 3052 . . . 4  |-  ( t  =  a  ->  ( E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )  <->  E. b  e.  NN0  ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) ) )
3916, 17, 18, 30, 38cbvrab 3198 . . 3  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) }  =  { a  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }
40 simp1 1061 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  NN0 )
41 peano2nn0 11333 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
42413ad2ant1 1082 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( N  +  1 )  e.  NN0 )
43 ovex 6678 . . . . . . . . . 10  |-  ( 1 ... ( N  + 
1 ) )  e. 
_V
44 nn0p1nn 11332 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
45 elfz1end 12371 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  NN  <->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
4644, 45sylib 208 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
47 mzpproj 37300 . . . . . . . . . 10  |-  ( ( ( 1 ... ( N  +  1 ) )  e.  _V  /\  ( N  +  1
)  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
4843, 46, 47sylancr 695 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  +  1 ) ) )  |->  ( c `
 ( N  + 
1 ) ) )  e.  (mzPoly `  (
1 ... ( N  + 
1 ) ) ) )
4948adantr 481 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
50 eqid 2622 . . . . . . . . 9  |-  ( N  +  1 )  =  ( N  +  1 )
5150rabdiophlem2 37366 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
52 mzpmulmpt 37305 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
5349, 51, 52syl2anc 693 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
54533adant3 1081 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
5550rabdiophlem2 37366 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
56553adant2 1080 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
57 eqrabdioph 37341 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
)  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
5842, 54, 56, 57syl3anc 1326 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
59 mzpnegmpt 37307 . . . . . . . . 9  |-  ( ( c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  -u ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
6049, 59syl 17 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  -u ( c `  ( N  +  1
) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
61 mzpmulmpt 37305 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  -u ( c `  ( N  +  1
) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
6260, 51, 61syl2anc 693 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
63623adant3 1081 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
64 eqrabdioph 37341 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( -u (
c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
6542, 63, 56, 64syl3anc 1326 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( -u (
c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
66 orrabdioph 37345 . . . . 5  |-  ( ( { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) )  /\  { c  e.  ( NN0  ^m  ( 1 ... ( N  +  1 ) ) )  |  (
-u ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  =  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ B }  e.  (Dioph `  ( N  + 
1 ) ) )  ->  { c  e.  ( NN0  ^m  (
1 ... ( N  + 
1 ) ) )  |  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )
6758, 65, 66syl2anc 693 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )
68 oveq1 6657 . . . . . . 7  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
b  x.  [_ a  /  t ]_ A
)  =  ( ( c `  ( N  +  1 ) )  x.  [_ a  / 
t ]_ A ) )
6968eqeq1d 2624 . . . . . 6  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  ( ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) )
70 negeq 10273 . . . . . . . 8  |-  ( b  =  ( c `  ( N  +  1
) )  ->  -u b  =  -u ( c `  ( N  +  1
) ) )
7170oveq1d 6665 . . . . . . 7  |-  ( b  =  ( c `  ( N  +  1
) )  ->  ( -u b  x.  [_ a  /  t ]_ A
)  =  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
) )
7271eqeq1d 2624 . . . . . 6  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  (
-u ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) )
7369, 72orbi12d 746 . . . . 5  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)  <->  ( ( ( c `  ( N  +  1 ) )  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) ) )
74 csbeq1 3536 . . . . . . . 8  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  [_ a  /  t ]_ A  =  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )
7574oveq2d 6666 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )
76 csbeq1 3536 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  [_ a  /  t ]_ B  =  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )
7775, 76eqeq12d 2637 . . . . . 6  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  ( ( c `  ( N  +  1 ) )  x.  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ A )  = 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ B ) )
7874oveq2d 6666 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  ( -u ( c `  ( N  +  1 ) )  x.  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ A ) )
7978, 76eqeq12d 2637 . . . . . 6  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( -u ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  (
-u ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  =  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ B ) )
8077, 79orbi12d 746 . . . . 5  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( ( ( c `
 ( N  + 
1 ) )  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)  <->  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) ) )
8150, 73, 80rexrabdioph 37358 . . . 4  |-  ( ( N  e.  NN0  /\  { c  e.  ( NN0 
^m  ( 1 ... ( N  +  1 ) ) )  |  ( ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }  e.  (Dioph `  N ) )
8240, 67, 81syl2anc 693 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }  e.  (Dioph `  N ) )
8339, 82syl5eqel 2705 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) }  e.  (Dioph `  N ) )
8415, 83eqeltrd 2701 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  e.  (Dioph `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   [_csb 3533   class class class wbr 4653    |-> cmpt 4729    |` cres 5116   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   1c1 9937    + caddc 9939    x. cmul 9941   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326    || cdvds 14983  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-dvds 14984  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  rmydioph  37581  expdiophlem2  37589
  Copyright terms: Public domain W3C validator