HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopval Structured version   Visualization version   Unicode version

Theorem nmopval 28715
Description: Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmopval  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
Distinct variable group:    x, y, T

Proof of Theorem nmopval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 xrltso 11974 . . 3  |-  <  Or  RR*
21supex 8369 . 2  |-  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  )  e.  _V
3 ax-hilex 27856 . 2  |-  ~H  e.  _V
4 fveq1 6190 . . . . . . . 8  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
54fveq2d 6195 . . . . . . 7  |-  ( t  =  T  ->  ( normh `  ( t `  y ) )  =  ( normh `  ( T `  y ) ) )
65eqeq2d 2632 . . . . . 6  |-  ( t  =  T  ->  (
x  =  ( normh `  ( t `  y
) )  <->  x  =  ( normh `  ( T `  y ) ) ) )
76anbi2d 740 . . . . 5  |-  ( t  =  T  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( t `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  x  =  ( normh `  ( T `  y ) ) ) ) )
87rexbidv 3052 . . . 4  |-  ( t  =  T  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( t `  y
) ) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) ) )
98abbidv 2741 . . 3  |-  ( t  =  T  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( t `  y
) ) ) }  =  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } )
109supeq1d 8352 . 2  |-  ( t  =  T  ->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( t `  y ) ) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  ) )
11 df-nmop 28698 . 2  |-  normop  =  ( t  e.  ( ~H 
^m  ~H )  |->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( t `  y ) ) ) } ,  RR* ,  <  ) )
122, 3, 3, 10, 11fvmptmap 7894 1  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   {cab 2608   E.wrex 2913   class class class wbr 4653   -->wf 5884   ` cfv 5888   supcsup 8346   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075   ~Hchil 27776   normhcno 27780   normopcnop 27802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-nmop 28698
This theorem is referenced by:  nmopxr  28725  nmoprepnf  28726  nmoplb  28766  nmopub  28767  nmopnegi  28824  nmop0  28845  nmlnop0iALT  28854  nmopun  28873  nmcopexi  28886  pjnmopi  29007
  Copyright terms: Public domain W3C validator