MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmosetre Structured version   Visualization version   Unicode version

Theorem nmosetre 27619
Description: The set in the supremum of the operator norm definition df-nmoo 27600 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmosetre.2  |-  Y  =  ( BaseSet `  W )
nmosetre.4  |-  N  =  ( normCV `  W )
Assertion
Ref Expression
nmosetre  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { x  |  E. z  e.  X  (
( M `  z
)  <_  1  /\  x  =  ( N `  ( T `  z
) ) ) } 
C_  RR )
Distinct variable groups:    x, z, T    x, W, z    x, X, z    x, Y, z
Allowed substitution hints:    M( x, z)    N( x, z)

Proof of Theorem nmosetre
StepHypRef Expression
1 ffvelrn 6357 . . . . . . . . 9  |-  ( ( T : X --> Y  /\  z  e.  X )  ->  ( T `  z
)  e.  Y )
2 nmosetre.2 . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
3 nmosetre.4 . . . . . . . . . 10  |-  N  =  ( normCV `  W )
42, 3nvcl 27516 . . . . . . . . 9  |-  ( ( W  e.  NrmCVec  /\  ( T `  z )  e.  Y )  ->  ( N `  ( T `  z ) )  e.  RR )
51, 4sylan2 491 . . . . . . . 8  |-  ( ( W  e.  NrmCVec  /\  ( T : X --> Y  /\  z  e.  X )
)  ->  ( N `  ( T `  z
) )  e.  RR )
65anassrs 680 . . . . . . 7  |-  ( ( ( W  e.  NrmCVec  /\  T : X --> Y )  /\  z  e.  X
)  ->  ( N `  ( T `  z
) )  e.  RR )
7 eleq1 2689 . . . . . . 7  |-  ( x  =  ( N `  ( T `  z ) )  ->  ( x  e.  RR  <->  ( N `  ( T `  z ) )  e.  RR ) )
86, 7syl5ibr 236 . . . . . 6  |-  ( x  =  ( N `  ( T `  z ) )  ->  ( (
( W  e.  NrmCVec  /\  T : X --> Y )  /\  z  e.  X
)  ->  x  e.  RR ) )
98impcom 446 . . . . 5  |-  ( ( ( ( W  e.  NrmCVec 
/\  T : X --> Y )  /\  z  e.  X )  /\  x  =  ( N `  ( T `  z ) ) )  ->  x  e.  RR )
109adantrl 752 . . . 4  |-  ( ( ( ( W  e.  NrmCVec 
/\  T : X --> Y )  /\  z  e.  X )  /\  (
( M `  z
)  <_  1  /\  x  =  ( N `  ( T `  z
) ) ) )  ->  x  e.  RR )
1110exp31 630 . . 3  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  -> 
( z  e.  X  ->  ( ( ( M `
 z )  <_ 
1  /\  x  =  ( N `  ( T `
 z ) ) )  ->  x  e.  RR ) ) )
1211rexlimdv 3030 . 2  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  -> 
( E. z  e.  X  ( ( M `
 z )  <_ 
1  /\  x  =  ( N `  ( T `
 z ) ) )  ->  x  e.  RR ) )
1312abssdv 3676 1  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { x  |  E. z  e.  X  (
( M `  z
)  <_  1  /\  x  =  ( N `  ( T `  z
) ) ) } 
C_  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888   RRcr 9935   1c1 9937    <_ cle 10075   NrmCVeccnv 27439   BaseSetcba 27441   normCVcnmcv 27445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455
This theorem is referenced by:  nmoxr  27621  nmooge0  27622  nmorepnf  27623  nmoolb  27626  nmoubi  27627  nmlno0lem  27648  nmopsetretHIL  28723
  Copyright terms: Public domain W3C validator