| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > noextendseq | Structured version Visualization version Unicode version | ||
| Description: Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021.) |
| Ref | Expression |
|---|---|
| noextend.1 |
|
| Ref | Expression |
|---|---|
| noextendseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nofun 31802 |
. . . 4
| |
| 2 | noextend.1 |
. . . . . 6
| |
| 3 | fnconstg 6093 |
. . . . . 6
| |
| 4 | fnfun 5988 |
. . . . . 6
| |
| 5 | 2, 3, 4 | mp2b 10 |
. . . . 5
|
| 6 | snnzg 4308 |
. . . . . . . . 9
| |
| 7 | dmxp 5344 |
. . . . . . . . 9
| |
| 8 | 2, 6, 7 | mp2b 10 |
. . . . . . . 8
|
| 9 | 8 | ineq2i 3811 |
. . . . . . 7
|
| 10 | disjdif 4040 |
. . . . . . 7
| |
| 11 | 9, 10 | eqtri 2644 |
. . . . . 6
|
| 12 | funun 5932 |
. . . . . 6
| |
| 13 | 11, 12 | mpan2 707 |
. . . . 5
|
| 14 | 5, 13 | mpan2 707 |
. . . 4
|
| 15 | 1, 14 | syl 17 |
. . 3
|
| 16 | 15 | adantr 481 |
. 2
|
| 17 | dmun 5331 |
. . . 4
| |
| 18 | 8 | uneq2i 3764 |
. . . 4
|
| 19 | 17, 18 | eqtri 2644 |
. . 3
|
| 20 | nodmon 31803 |
. . . 4
| |
| 21 | undif 4049 |
. . . . . 6
| |
| 22 | eleq1a 2696 |
. . . . . . 7
| |
| 23 | 22 | adantl 482 |
. . . . . 6
|
| 24 | 21, 23 | syl5bi 232 |
. . . . 5
|
| 25 | ssdif0 3942 |
. . . . . 6
| |
| 26 | uneq2 3761 |
. . . . . . . . . 10
| |
| 27 | un0 3967 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | syl6eq 2672 |
. . . . . . . . 9
|
| 29 | 28 | eleq1d 2686 |
. . . . . . . 8
|
| 30 | 29 | biimprcd 240 |
. . . . . . 7
|
| 31 | 30 | adantr 481 |
. . . . . 6
|
| 32 | 25, 31 | syl5bi 232 |
. . . . 5
|
| 33 | eloni 5733 |
. . . . . 6
| |
| 34 | eloni 5733 |
. . . . . 6
| |
| 35 | ordtri2or2 5823 |
. . . . . 6
| |
| 36 | 33, 34, 35 | syl2an 494 |
. . . . 5
|
| 37 | 24, 32, 36 | mpjaod 396 |
. . . 4
|
| 38 | 20, 37 | sylan 488 |
. . 3
|
| 39 | 19, 38 | syl5eqel 2705 |
. 2
|
| 40 | rnun 5541 |
. . 3
| |
| 41 | norn 31804 |
. . . . 5
| |
| 42 | 41 | adantr 481 |
. . . 4
|
| 43 | rnxpss 5566 |
. . . . 5
| |
| 44 | snssi 4339 |
. . . . . 6
| |
| 45 | 2, 44 | ax-mp 5 |
. . . . 5
|
| 46 | 43, 45 | sstri 3612 |
. . . 4
|
| 47 | unss 3787 |
. . . 4
| |
| 48 | 42, 46, 47 | sylanblc 696 |
. . 3
|
| 49 | 40, 48 | syl5eqss 3649 |
. 2
|
| 50 | elno2 31807 |
. 2
| |
| 51 | 16, 39, 49, 50 | syl3anbrc 1246 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-no 31796 |
| This theorem is referenced by: noetalem1 31863 |
| Copyright terms: Public domain | W3C validator |