Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextenddif Structured version   Visualization version   Unicode version

Theorem noextenddif 31821
Description: Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1  |-  X  e. 
{ 1o ,  2o }
Assertion
Ref Expression
noextenddif  |-  ( A  e.  No  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( ( A  u.  {
<. dom  A ,  X >. } ) `  x
) }  =  dom  A )
Distinct variable groups:    x, A    x, X

Proof of Theorem noextenddif
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nodmon 31803 . . 3  |-  ( A  e.  No  ->  dom  A  e.  On )
2 noextend.1 . . . . . 6  |-  X  e. 
{ 1o ,  2o }
32nosgnn0i 31812 . . . . 5  |-  (/)  =/=  X
43a1i 11 . . . 4  |-  ( A  e.  No  ->  (/)  =/=  X
)
5 nodmord 31806 . . . . . 6  |-  ( A  e.  No  ->  Ord  dom 
A )
6 ordirr 5741 . . . . . 6  |-  ( Ord 
dom  A  ->  -.  dom  A  e.  dom  A )
75, 6syl 17 . . . . 5  |-  ( A  e.  No  ->  -.  dom  A  e.  dom  A
)
8 ndmfv 6218 . . . . 5  |-  ( -. 
dom  A  e.  dom  A  ->  ( A `  dom  A )  =  (/) )
97, 8syl 17 . . . 4  |-  ( A  e.  No  ->  ( A `  dom  A )  =  (/) )
10 nofun 31802 . . . . . . 7  |-  ( A  e.  No  ->  Fun  A )
11 funfn 5918 . . . . . . 7  |-  ( Fun 
A  <->  A  Fn  dom  A )
1210, 11sylib 208 . . . . . 6  |-  ( A  e.  No  ->  A  Fn  dom  A )
13 fnsng 5938 . . . . . . 7  |-  ( ( dom  A  e.  On  /\  X  e.  { 1o ,  2o } )  ->  { <. dom  A ,  X >. }  Fn  { dom  A } )
141, 2, 13sylancl 694 . . . . . 6  |-  ( A  e.  No  ->  { <. dom 
A ,  X >. }  Fn  { dom  A } )
15 disjsn 4246 . . . . . . 7  |-  ( ( dom  A  i^i  { dom  A } )  =  (/) 
<->  -.  dom  A  e. 
dom  A )
167, 15sylibr 224 . . . . . 6  |-  ( A  e.  No  ->  ( dom  A  i^i  { dom  A } )  =  (/) )
17 snidg 4206 . . . . . . 7  |-  ( dom 
A  e.  On  ->  dom 
A  e.  { dom  A } )
181, 17syl 17 . . . . . 6  |-  ( A  e.  No  ->  dom  A  e.  { dom  A } )
19 fvun2 6270 . . . . . 6  |-  ( ( A  Fn  dom  A  /\  { <. dom  A ,  X >. }  Fn  { dom  A }  /\  (
( dom  A  i^i  { dom  A } )  =  (/)  /\  dom  A  e.  { dom  A }
) )  ->  (
( A  u.  { <. dom  A ,  X >. } ) `  dom  A )  =  ( {
<. dom  A ,  X >. } `  dom  A
) )
2012, 14, 16, 18, 19syl112anc 1330 . . . . 5  |-  ( A  e.  No  ->  (
( A  u.  { <. dom  A ,  X >. } ) `  dom  A )  =  ( {
<. dom  A ,  X >. } `  dom  A
) )
21 fvsng 6447 . . . . . 6  |-  ( ( dom  A  e.  On  /\  X  e.  { 1o ,  2o } )  -> 
( { <. dom  A ,  X >. } `  dom  A )  =  X )
221, 2, 21sylancl 694 . . . . 5  |-  ( A  e.  No  ->  ( { <. dom  A ,  X >. } `  dom  A )  =  X )
2320, 22eqtrd 2656 . . . 4  |-  ( A  e.  No  ->  (
( A  u.  { <. dom  A ,  X >. } ) `  dom  A )  =  X )
244, 9, 233netr4d 2871 . . 3  |-  ( A  e.  No  ->  ( A `  dom  A )  =/=  ( ( A  u.  { <. dom  A ,  X >. } ) `  dom  A ) )
25 fveq2 6191 . . . . 5  |-  ( x  =  dom  A  -> 
( A `  x
)  =  ( A `
 dom  A )
)
26 fveq2 6191 . . . . 5  |-  ( x  =  dom  A  -> 
( ( A  u.  {
<. dom  A ,  X >. } ) `  x
)  =  ( ( A  u.  { <. dom 
A ,  X >. } ) `  dom  A
) )
2725, 26neeq12d 2855 . . . 4  |-  ( x  =  dom  A  -> 
( ( A `  x )  =/=  (
( A  u.  { <. dom  A ,  X >. } ) `  x
)  <->  ( A `  dom  A )  =/=  (
( A  u.  { <. dom  A ,  X >. } ) `  dom  A ) ) )
2827onintss 5775 . . 3  |-  ( dom 
A  e.  On  ->  ( ( A `  dom  A )  =/=  ( ( A  u.  { <. dom 
A ,  X >. } ) `  dom  A
)  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( ( A  u.  {
<. dom  A ,  X >. } ) `  x
) }  C_  dom  A ) )
291, 24, 28sylc 65 . 2  |-  ( A  e.  No  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( ( A  u.  {
<. dom  A ,  X >. } ) `  x
) }  C_  dom  A )
30 eloni 5733 . . . . . . . 8  |-  ( y  e.  On  ->  Ord  y )
31 ordtri2 5758 . . . . . . . . . 10  |-  ( ( Ord  y  /\  Ord  dom 
A )  ->  (
y  e.  dom  A  <->  -.  ( y  =  dom  A  \/  dom  A  e.  y ) ) )
32 eqcom 2629 . . . . . . . . . . . . 13  |-  ( y  =  dom  A  <->  dom  A  =  y )
3332orbi1i 542 . . . . . . . . . . . 12  |-  ( ( y  =  dom  A  \/  dom  A  e.  y )  <->  ( dom  A  =  y  \/  dom  A  e.  y ) )
34 orcom 402 . . . . . . . . . . . 12  |-  ( ( dom  A  =  y  \/  dom  A  e.  y )  <->  ( dom  A  e.  y  \/  dom  A  =  y ) )
3533, 34bitri 264 . . . . . . . . . . 11  |-  ( ( y  =  dom  A  \/  dom  A  e.  y )  <->  ( dom  A  e.  y  \/  dom  A  =  y ) )
3635notbii 310 . . . . . . . . . 10  |-  ( -.  ( y  =  dom  A  \/  dom  A  e.  y )  <->  -.  ( dom  A  e.  y  \/ 
dom  A  =  y
) )
3731, 36syl6bb 276 . . . . . . . . 9  |-  ( ( Ord  y  /\  Ord  dom 
A )  ->  (
y  e.  dom  A  <->  -.  ( dom  A  e.  y  \/  dom  A  =  y ) ) )
38 ordsseleq 5752 . . . . . . . . . . 11  |-  ( ( Ord  dom  A  /\  Ord  y )  ->  ( dom  A  C_  y  <->  ( dom  A  e.  y  \/  dom  A  =  y ) ) )
3938notbid 308 . . . . . . . . . 10  |-  ( ( Ord  dom  A  /\  Ord  y )  ->  ( -.  dom  A  C_  y  <->  -.  ( dom  A  e.  y  \/  dom  A  =  y ) ) )
4039ancoms 469 . . . . . . . . 9  |-  ( ( Ord  y  /\  Ord  dom 
A )  ->  ( -.  dom  A  C_  y  <->  -.  ( dom  A  e.  y  \/  dom  A  =  y ) ) )
4137, 40bitr4d 271 . . . . . . . 8  |-  ( ( Ord  y  /\  Ord  dom 
A )  ->  (
y  e.  dom  A  <->  -. 
dom  A  C_  y ) )
4230, 5, 41syl2anr 495 . . . . . . 7  |-  ( ( A  e.  No  /\  y  e.  On )  ->  ( y  e.  dom  A  <->  -.  dom  A  C_  y
) )
43123ad2ant1 1082 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  y  e.  On  /\  y  e.  dom  A )  ->  A  Fn  dom  A )
44143ad2ant1 1082 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  y  e.  On  /\  y  e.  dom  A )  ->  { <. dom  A ,  X >. }  Fn  { dom  A } )
45163ad2ant1 1082 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  y  e.  On  /\  y  e.  dom  A )  -> 
( dom  A  i^i  { dom  A } )  =  (/) )
46 simp3 1063 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  y  e.  On  /\  y  e.  dom  A )  -> 
y  e.  dom  A
)
47 fvun1 6269 . . . . . . . . . 10  |-  ( ( A  Fn  dom  A  /\  { <. dom  A ,  X >. }  Fn  { dom  A }  /\  (
( dom  A  i^i  { dom  A } )  =  (/)  /\  y  e.  dom  A ) )  ->  ( ( A  u.  { <. dom  A ,  X >. } ) `  y )  =  ( A `  y ) )
4843, 44, 45, 46, 47syl112anc 1330 . . . . . . . . 9  |-  ( ( A  e.  No  /\  y  e.  On  /\  y  e.  dom  A )  -> 
( ( A  u.  {
<. dom  A ,  X >. } ) `  y
)  =  ( A `
 y ) )
4948eqcomd 2628 . . . . . . . 8  |-  ( ( A  e.  No  /\  y  e.  On  /\  y  e.  dom  A )  -> 
( A `  y
)  =  ( ( A  u.  { <. dom 
A ,  X >. } ) `  y ) )
50493expia 1267 . . . . . . 7  |-  ( ( A  e.  No  /\  y  e.  On )  ->  ( y  e.  dom  A  ->  ( A `  y )  =  ( ( A  u.  { <. dom  A ,  X >. } ) `  y
) ) )
5142, 50sylbird 250 . . . . . 6  |-  ( ( A  e.  No  /\  y  e.  On )  ->  ( -.  dom  A  C_  y  ->  ( A `  y )  =  ( ( A  u.  { <. dom  A ,  X >. } ) `  y
) ) )
5251necon1ad 2811 . . . . 5  |-  ( ( A  e.  No  /\  y  e.  On )  ->  ( ( A `  y )  =/=  (
( A  u.  { <. dom  A ,  X >. } ) `  y
)  ->  dom  A  C_  y ) )
5352ralrimiva 2966 . . . 4  |-  ( A  e.  No  ->  A. y  e.  On  ( ( A `
 y )  =/=  ( ( A  u.  {
<. dom  A ,  X >. } ) `  y
)  ->  dom  A  C_  y ) )
54 fveq2 6191 . . . . . 6  |-  ( x  =  y  ->  ( A `  x )  =  ( A `  y ) )
55 fveq2 6191 . . . . . 6  |-  ( x  =  y  ->  (
( A  u.  { <. dom  A ,  X >. } ) `  x
)  =  ( ( A  u.  { <. dom 
A ,  X >. } ) `  y ) )
5654, 55neeq12d 2855 . . . . 5  |-  ( x  =  y  ->  (
( A `  x
)  =/=  ( ( A  u.  { <. dom 
A ,  X >. } ) `  x )  <-> 
( A `  y
)  =/=  ( ( A  u.  { <. dom 
A ,  X >. } ) `  y ) ) )
5756ralrab 3368 . . . 4  |-  ( A. y  e.  { x  e.  On  |  ( A `
 x )  =/=  ( ( A  u.  {
<. dom  A ,  X >. } ) `  x
) } dom  A  C_  y  <->  A. y  e.  On  ( ( A `  y )  =/=  (
( A  u.  { <. dom  A ,  X >. } ) `  y
)  ->  dom  A  C_  y ) )
5853, 57sylibr 224 . . 3  |-  ( A  e.  No  ->  A. y  e.  { x  e.  On  |  ( A `  x )  =/=  (
( A  u.  { <. dom  A ,  X >. } ) `  x
) } dom  A  C_  y )
59 ssint 4493 . . 3  |-  ( dom 
A  C_  |^| { x  e.  On  |  ( A `
 x )  =/=  ( ( A  u.  {
<. dom  A ,  X >. } ) `  x
) }  <->  A. y  e.  { x  e.  On  |  ( A `  x )  =/=  (
( A  u.  { <. dom  A ,  X >. } ) `  x
) } dom  A  C_  y )
6058, 59sylibr 224 . 2  |-  ( A  e.  No  ->  dom  A 
C_  |^| { x  e.  On  |  ( A `
 x )  =/=  ( ( A  u.  {
<. dom  A ,  X >. } ) `  x
) } )
6129, 60eqssd 3620 1  |-  ( A  e.  No  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( ( A  u.  {
<. dom  A ,  X >. } ) `  x
) }  =  dom  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   |^|cint 4475   dom cdm 5114   Ord word 5722   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796
This theorem is referenced by:  noextendlt  31822  noextendgt  31823
  Copyright terms: Public domain W3C validator