MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgn0 Structured version   Visualization version   Unicode version

Theorem ntrivcvgn0 14630
Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgn0.2  |-  ( ph  ->  M  e.  ZZ )
ntrivcvgn0.3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
ntrivcvgn0.4  |-  ( ph  ->  X  =/=  0 )
Assertion
Ref Expression
ntrivcvgn0  |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y ) )
Distinct variable groups:    n, F, y    n, M, y    y, X    n, Z
Allowed substitution hints:    ph( y, n)    X( n)    Z( y)

Proof of Theorem ntrivcvgn0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 uzid 11702 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 17 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 ntrivcvgn0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
53, 4syl6eleqr 2712 . 2  |-  ( ph  ->  M  e.  Z )
6 ntrivcvgn0.3 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
7 climrel 14223 . . . . 5  |-  Rel  ~~>
87brrelex2i 5159 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  X  ->  X  e.  _V )
96, 8syl 17 . . 3  |-  ( ph  ->  X  e.  _V )
10 ntrivcvgn0.4 . . . 4  |-  ( ph  ->  X  =/=  0 )
1110, 6jca 554 . . 3  |-  ( ph  ->  ( X  =/=  0  /\  seq M (  x.  ,  F )  ~~>  X ) )
12 neeq1 2856 . . . . 5  |-  ( y  =  X  ->  (
y  =/=  0  <->  X  =/=  0 ) )
13 breq2 4657 . . . . 5  |-  ( y  =  X  ->  (  seq M (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  X ) )
1412, 13anbi12d 747 . . . 4  |-  ( y  =  X  ->  (
( y  =/=  0  /\  seq M (  x.  ,  F )  ~~>  y )  <-> 
( X  =/=  0  /\  seq M (  x.  ,  F )  ~~>  X ) ) )
1514spcegv 3294 . . 3  |-  ( X  e.  _V  ->  (
( X  =/=  0  /\  seq M (  x.  ,  F )  ~~>  X )  ->  E. y ( y  =/=  0  /\  seq M (  x.  ,  F )  ~~>  y ) ) )
169, 11, 15sylc 65 . 2  |-  ( ph  ->  E. y ( y  =/=  0  /\  seq M (  x.  ,  F )  ~~>  y ) )
17 seqeq1 12804 . . . . . 6  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
1817breq1d 4663 . . . . 5  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
1918anbi2d 740 . . . 4  |-  ( n  =  M  ->  (
( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y )  <-> 
( y  =/=  0  /\  seq M (  x.  ,  F )  ~~>  y ) ) )
2019exbidv 1850 . . 3  |-  ( n  =  M  ->  ( E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y )  <->  E. y
( y  =/=  0  /\  seq M (  x.  ,  F )  ~~>  y ) ) )
2120rspcev 3309 . 2  |-  ( ( M  e.  Z  /\  E. y ( y  =/=  0  /\  seq M
(  x.  ,  F
)  ~~>  y ) )  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y ) )
225, 16, 21syl2anc 693 1  |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   ` cfv 5888   0cc0 9936    x. cmul 9941   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-seq 12802  df-clim 14219
This theorem is referenced by:  zprodn0  14669
  Copyright terms: Public domain W3C validator