MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvg Structured version   Visualization version   Unicode version

Theorem ntrivcvg 14629
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvg.2  |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y ) )
ntrivcvg.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
ntrivcvg  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    k, F, n, y    ph, k, y   
k, M, n, y    ph, n, y    k, Z, y
Allowed substitution hint:    Z( n)

Proof of Theorem ntrivcvg
StepHypRef Expression
1 ntrivcvg.2 . 2  |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y ) )
2 uzm1 11718 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  =  M  \/  (
n  -  1 )  e.  ( ZZ>= `  M
) ) )
3 ntrivcvg.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
42, 3eleq2s 2719 . . . . . . . 8  |-  ( n  e.  Z  ->  (
n  =  M  \/  ( n  -  1
)  e.  ( ZZ>= `  M ) ) )
54ad2antlr 763 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  ( n  =  M  \/  ( n  -  1 )  e.  ( ZZ>= `  M )
) )
6 seqeq1 12804 . . . . . . . . . . 11  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
76breq1d 4663 . . . . . . . . . 10  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
8 seqex 12803 . . . . . . . . . . 11  |-  seq M
(  x.  ,  F
)  e.  _V
9 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
108, 9breldm 5329 . . . . . . . . . 10  |-  (  seq M (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
117, 10syl6bi 243 . . . . . . . . 9  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
1211adantld 483 . . . . . . . 8  |-  ( n  =  M  ->  (
( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
13 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (
n  -  1 )  e.  Z )
14 ntrivcvg.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1514adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1615adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  k  e.  Z
)  ->  ( F `  k )  e.  CC )
1716adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  - 
1 )  e.  Z
)  /\  seq n
(  x.  ,  F
)  ~~>  y )  /\  k  e.  Z )  ->  ( F `  k
)  e.  CC )
18 uzssz 11707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ZZ>= `  M )  C_  ZZ
193, 18eqsstri 3635 . . . . . . . . . . . . . . . . . . 19  |-  Z  C_  ZZ
20 simplr 792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  Z )
2119, 20sseldi 3601 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  ZZ )
2221zcnd 11483 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  CC )
23 1cnd 10056 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
1  e.  CC )
2422, 23npcand 10396 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
( ( n  - 
1 )  +  1 )  =  n )
2524seqeq1d 12807 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  seq ( ( n  - 
1 )  +  1 ) (  x.  ,  F )  =  seq n (  x.  ,  F ) )
2625breq1d 4663 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
(  seq ( ( n  -  1 )  +  1 ) (  x.  ,  F )  ~~>  y  <->  seq n
(  x.  ,  F
)  ~~>  y ) )
2726biimpar 502 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq ( ( n  - 
1 )  +  1 ) (  x.  ,  F )  ~~>  y )
283, 13, 17, 27clim2prod 14620 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
) )
29 ovex 6678 . . . . . . . . . . . . 13  |-  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
)  e.  _V
308, 29breldm 5329 . . . . . . . . . . . 12  |-  (  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
)  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3128, 30syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3231an32s 846 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  /\  ( n  - 
1 )  e.  Z
)  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3332expcom 451 . . . . . . . . 9  |-  ( ( n  -  1 )  e.  Z  ->  (
( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
343eqcomi 2631 . . . . . . . . 9  |-  ( ZZ>= `  M )  =  Z
3533, 34eleq2s 2719 . . . . . . . 8  |-  ( ( n  -  1 )  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
3612, 35jaoi 394 . . . . . . 7  |-  ( ( n  =  M  \/  ( n  -  1
)  e.  ( ZZ>= `  M ) )  -> 
( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
375, 36mpcom 38 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
3837ex 450 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq n (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
3938adantld 483 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( y  =/=  0  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
4039exlimdv 1861 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
4140rexlimdva 3031 . 2  |-  ( ph  ->  ( E. n  e.  Z  E. y ( y  =/=  0  /\ 
seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
421, 41mpd 15 1  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  iprodclim2  14730  iprodcl  14732
  Copyright terms: Public domain W3C validator