MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgfvn0 Structured version   Visualization version   Unicode version

Theorem ntrivcvgfvn0 14631
Description: Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgfvn0.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgfvn0.2  |-  ( ph  ->  N  e.  Z )
ntrivcvgfvn0.3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
ntrivcvgfvn0.4  |-  ( ph  ->  X  =/=  0 )
ntrivcvgfvn0.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
ntrivcvgfvn0  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  =/=  0 )
Distinct variable groups:    k, F    ph, k    k, M    k, N    k, Z
Allowed substitution hint:    X( k)

Proof of Theorem ntrivcvgfvn0
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ntrivcvgfvn0.4 . 2  |-  ( ph  ->  X  =/=  0 )
2 fclim 14284 . . . . . . . 8  |-  ~~>  : dom  ~~>  --> CC
3 ffun 6048 . . . . . . . 8  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
42, 3ax-mp 5 . . . . . . 7  |-  Fun  ~~>
5 ntrivcvgfvn0.3 . . . . . . 7  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
6 funbrfv 6234 . . . . . . 7  |-  ( Fun  ~~>  ->  (  seq M (  x.  ,  F )  ~~>  X  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  X ) )
74, 5, 6mpsyl 68 . . . . . 6  |-  ( ph  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  X )
87adantr 481 . . . . 5  |-  ( (
ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  X )
9 eqid 2622 . . . . . . 7  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
10 ntrivcvgfvn0.1 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
11 uzssz 11707 . . . . . . . . . 10  |-  ( ZZ>= `  M )  C_  ZZ
1210, 11eqsstri 3635 . . . . . . . . 9  |-  Z  C_  ZZ
13 ntrivcvgfvn0.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  Z )
1412, 13sseldi 3601 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
1514adantr 481 . . . . . . 7  |-  ( (
ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  N  e.  ZZ )
16 seqex 12803 . . . . . . . 8  |-  seq M
(  x.  ,  F
)  e.  _V
1716a1i 11 . . . . . . 7  |-  ( (
ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  seq M (  x.  ,  F )  e. 
_V )
18 0cnd 10033 . . . . . . 7  |-  ( (
ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  0  e.  CC )
19 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
2019eqeq1d 2624 . . . . . . . . . 10  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  F ) `  m )  =  0  <-> 
(  seq M (  x.  ,  F ) `  N )  =  0 ) )
2120imbi2d 330 . . . . . . . . 9  |-  ( m  =  N  ->  (
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  0 )  <-> 
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  N
)  =  0 ) ) )
22 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
2322eqeq1d 2624 . . . . . . . . . 10  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  F ) `  m )  =  0  <-> 
(  seq M (  x.  ,  F ) `  n )  =  0 ) )
2423imbi2d 330 . . . . . . . . 9  |-  ( m  =  n  ->  (
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  0 )  <-> 
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  n
)  =  0 ) ) )
25 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
2625eqeq1d 2624 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  F ) `  m )  =  0  <-> 
(  seq M (  x.  ,  F ) `  ( n  +  1
) )  =  0 ) )
2726imbi2d 330 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  (
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  0 )  <-> 
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  0 ) ) )
28 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  k  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  k
) )
2928eqeq1d 2624 . . . . . . . . . 10  |-  ( m  =  k  ->  (
(  seq M (  x.  ,  F ) `  m )  =  0  <-> 
(  seq M (  x.  ,  F ) `  k )  =  0 ) )
3029imbi2d 330 . . . . . . . . 9  |-  ( m  =  k  ->  (
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  0 )  <-> 
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  k
)  =  0 ) ) )
31 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  (  seq M
(  x.  ,  F
) `  N )  =  0 )
3231a1i 11 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  (  seq M
(  x.  ,  F
) `  N )  =  0 ) )
3313, 10syl6eleq 2711 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
34 uztrn 11704 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
3533, 34sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= `  N )  /\  ph )  ->  n  e.  (
ZZ>= `  M ) )
36353adant3 1081 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  N )  /\  ph  /\  (  seq M (  x.  ,  F ) `
 n )  =  0 )  ->  n  e.  ( ZZ>= `  M )
)
37 seqp1 12816 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
3836, 37syl 17 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  N )  /\  ph  /\  (  seq M (  x.  ,  F ) `
 n )  =  0 )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
39 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( (  seq M (  x.  ,  F ) `  n )  =  0  ->  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) )  =  ( 0  x.  ( F `  (
n  +  1 ) ) ) )
40393ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  N )  /\  ph  /\  (  seq M (  x.  ,  F ) `
 n )  =  0 )  ->  (
(  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) )  =  ( 0  x.  ( F `  ( n  +  1
) ) ) )
41 peano2uz 11741 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  N
)  ->  ( n  +  1 )  e.  ( ZZ>= `  N )
)
4210uztrn2 11705 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  Z  /\  ( n  +  1
)  e.  ( ZZ>= `  N ) )  -> 
( n  +  1 )  e.  Z )
4313, 41, 42syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  ( n  +  1 )  e.  Z )
44 ntrivcvgfvn0.5 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4544ralrimiva 2966 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
46 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
4746eleq1d 2686 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
4847rspcv 3305 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  +  1 )  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( F `  ( n  +  1 ) )  e.  CC ) )
4945, 48mpan9 486 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( n  +  1 )  e.  Z )  ->  ( F `  ( n  +  1 ) )  e.  CC )
5043, 49syldan 487 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  ( F `  ( n  +  1 ) )  e.  CC )
5150ancoms 469 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( ZZ>= `  N )  /\  ph )  ->  ( F `  ( n  +  1
) )  e.  CC )
5251mul02d 10234 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ZZ>= `  N )  /\  ph )  ->  ( 0  x.  ( F `  (
n  +  1 ) ) )  =  0 )
53523adant3 1081 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  N )  /\  ph  /\  (  seq M (  x.  ,  F ) `
 n )  =  0 )  ->  (
0  x.  ( F `
 ( n  + 
1 ) ) )  =  0 )
5438, 40, 533eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ZZ>= `  N )  /\  ph  /\  (  seq M (  x.  ,  F ) `
 n )  =  0 )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  0 )
55543exp 1264 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  n )  =  0  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  0 ) ) )
5655adantrd 484 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  N
)  ->  ( ( ph  /\  (  seq M
(  x.  ,  F
) `  N )  =  0 )  -> 
( (  seq M
(  x.  ,  F
) `  n )  =  0  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  0 ) ) )
5756a2d 29 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  N
)  ->  ( (
( ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  (  seq M
(  x.  ,  F
) `  n )  =  0 )  -> 
( ( ph  /\  (  seq M (  x.  ,  F ) `  N )  =  0 )  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  0 ) ) )
5821, 24, 27, 30, 32, 57uzind4 11746 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( ( ph  /\  (  seq M
(  x.  ,  F
) `  N )  =  0 )  -> 
(  seq M (  x.  ,  F ) `  k )  =  0 ) )
5958impcom 446 . . . . . . 7  |-  ( ( ( ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  /\  k  e.  (
ZZ>= `  N ) )  ->  (  seq M
(  x.  ,  F
) `  k )  =  0 )
609, 15, 17, 18, 59climconst 14274 . . . . . 6  |-  ( (
ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  seq M (  x.  ,  F )  ~~>  0 )
61 funbrfv 6234 . . . . . 6  |-  ( Fun  ~~>  ->  (  seq M (  x.  ,  F )  ~~>  0  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  0 ) )
624, 60, 61mpsyl 68 . . . . 5  |-  ( (
ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  0 )
638, 62eqtr3d 2658 . . . 4  |-  ( (
ph  /\  (  seq M (  x.  ,  F ) `  N
)  =  0 )  ->  X  =  0 )
6463ex 450 . . 3  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  =  0  ->  X  =  0 ) )
6564necon3d 2815 . 2  |-  ( ph  ->  ( X  =/=  0  ->  (  seq M (  x.  ,  F ) `
 N )  =/=  0 ) )
661, 65mpd 15 1  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  ntrivcvgtail  14632
  Copyright terms: Public domain W3C validator