Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddpwdcv Structured version   Visualization version   Unicode version

Theorem oddpwdcv 30417
Description: Lemma for eulerpart 30444: value of the  F function. (Contributed by Thierry Arnoux, 9-Sep-2017.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
oddpwdcv  |-  ( W  e.  ( J  X.  NN0 )  ->  ( F `
 W )  =  ( ( 2 ^ ( 2nd `  W
) )  x.  ( 1st `  W ) ) )
Distinct variable groups:    x, y,
z    x, J, y    x, W, y
Allowed substitution hints:    F( x, y, z)    J( z)    W( z)

Proof of Theorem oddpwdcv
StepHypRef Expression
1 1st2nd2 7205 . . 3  |-  ( W  e.  ( J  X.  NN0 )  ->  W  = 
<. ( 1st `  W
) ,  ( 2nd `  W ) >. )
21fveq2d 6195 . 2  |-  ( W  e.  ( J  X.  NN0 )  ->  ( F `
 W )  =  ( F `  <. ( 1st `  W ) ,  ( 2nd `  W
) >. ) )
3 df-ov 6653 . . 3  |-  ( ( 1st `  W ) F ( 2nd `  W
) )  =  ( F `  <. ( 1st `  W ) ,  ( 2nd `  W
) >. )
43a1i 11 . 2  |-  ( W  e.  ( J  X.  NN0 )  ->  ( ( 1st `  W ) F ( 2nd `  W
) )  =  ( F `  <. ( 1st `  W ) ,  ( 2nd `  W
) >. ) )
5 elxp6 7200 . . . 4  |-  ( W  e.  ( J  X.  NN0 )  <->  ( W  = 
<. ( 1st `  W
) ,  ( 2nd `  W ) >.  /\  (
( 1st `  W
)  e.  J  /\  ( 2nd `  W )  e.  NN0 ) ) )
65simprbi 480 . . 3  |-  ( W  e.  ( J  X.  NN0 )  ->  ( ( 1st `  W )  e.  J  /\  ( 2nd `  W )  e. 
NN0 ) )
7 oveq2 6658 . . . 4  |-  ( x  =  ( 1st `  W
)  ->  ( (
2 ^ y )  x.  x )  =  ( ( 2 ^ y )  x.  ( 1st `  W ) ) )
8 oveq2 6658 . . . . 5  |-  ( y  =  ( 2nd `  W
)  ->  ( 2 ^ y )  =  ( 2 ^ ( 2nd `  W ) ) )
98oveq1d 6665 . . . 4  |-  ( y  =  ( 2nd `  W
)  ->  ( (
2 ^ y )  x.  ( 1st `  W
) )  =  ( ( 2 ^ ( 2nd `  W ) )  x.  ( 1st `  W
) ) )
10 oddpwdc.f . . . 4  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
11 ovex 6678 . . . 4  |-  ( ( 2 ^ ( 2nd `  W ) )  x.  ( 1st `  W
) )  e.  _V
127, 9, 10, 11ovmpt2 6796 . . 3  |-  ( ( ( 1st `  W
)  e.  J  /\  ( 2nd `  W )  e.  NN0 )  -> 
( ( 1st `  W
) F ( 2nd `  W ) )  =  ( ( 2 ^ ( 2nd `  W
) )  x.  ( 1st `  W ) ) )
136, 12syl 17 . 2  |-  ( W  e.  ( J  X.  NN0 )  ->  ( ( 1st `  W ) F ( 2nd `  W
) )  =  ( ( 2 ^ ( 2nd `  W ) )  x.  ( 1st `  W
) ) )
142, 4, 133eqtr2d 2662 1  |-  ( W  e.  ( J  X.  NN0 )  ->  ( F `
 W )  =  ( ( 2 ^ ( 2nd `  W
) )  x.  ( 1st `  W ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167    x. cmul 9941   NNcn 11020   2c2 11070   NN0cn0 11292   ^cexp 12860    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  eulerpartlemgvv  30438  eulerpartlemgh  30440  eulerpartlemgs2  30442
  Copyright terms: Public domain W3C validator