MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmin Structured version   Visualization version   Unicode version

Theorem oneqmin 7005
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmin  |-  ( ( B  C_  On  /\  B  =/=  (/) )  ->  ( A  =  |^| B  <->  ( A  e.  B  /\  A. x  e.  A  -.  x  e.  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem oneqmin
StepHypRef Expression
1 onint 6995 . . . 4  |-  ( ( B  C_  On  /\  B  =/=  (/) )  ->  |^| B  e.  B )
2 eleq1 2689 . . . 4  |-  ( A  =  |^| B  -> 
( A  e.  B  <->  |^| B  e.  B ) )
31, 2syl5ibrcom 237 . . 3  |-  ( ( B  C_  On  /\  B  =/=  (/) )  ->  ( A  =  |^| B  ->  A  e.  B )
)
4 eleq2 2690 . . . . . . 7  |-  ( A  =  |^| B  -> 
( x  e.  A  <->  x  e.  |^| B ) )
54biimpd 219 . . . . . 6  |-  ( A  =  |^| B  -> 
( x  e.  A  ->  x  e.  |^| B
) )
6 onnmin 7003 . . . . . . . 8  |-  ( ( B  C_  On  /\  x  e.  B )  ->  -.  x  e.  |^| B )
76ex 450 . . . . . . 7  |-  ( B 
C_  On  ->  ( x  e.  B  ->  -.  x  e.  |^| B ) )
87con2d 129 . . . . . 6  |-  ( B 
C_  On  ->  ( x  e.  |^| B  ->  -.  x  e.  B )
)
95, 8syl9r 78 . . . . 5  |-  ( B 
C_  On  ->  ( A  =  |^| B  -> 
( x  e.  A  ->  -.  x  e.  B
) ) )
109ralrimdv 2968 . . . 4  |-  ( B 
C_  On  ->  ( A  =  |^| B  ->  A. x  e.  A  -.  x  e.  B
) )
1110adantr 481 . . 3  |-  ( ( B  C_  On  /\  B  =/=  (/) )  ->  ( A  =  |^| B  ->  A. x  e.  A  -.  x  e.  B
) )
123, 11jcad 555 . 2  |-  ( ( B  C_  On  /\  B  =/=  (/) )  ->  ( A  =  |^| B  -> 
( A  e.  B  /\  A. x  e.  A  -.  x  e.  B
) ) )
13 oneqmini 5776 . . 3  |-  ( B 
C_  On  ->  ( ( A  e.  B  /\  A. x  e.  A  -.  x  e.  B )  ->  A  =  |^| B
) )
1413adantr 481 . 2  |-  ( ( B  C_  On  /\  B  =/=  (/) )  ->  (
( A  e.  B  /\  A. x  e.  A  -.  x  e.  B
)  ->  A  =  |^| B ) )
1512, 14impbid 202 1  |-  ( ( B  C_  On  /\  B  =/=  (/) )  ->  ( A  =  |^| B  <->  ( A  e.  B  /\  A. x  e.  A  -.  x  e.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   |^|cint 4475   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator