| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onnminsb | Structured version Visualization version Unicode version | ||
| Description: An ordinal number smaller
than the minimum of a set of ordinal numbers
does not have the property determining that set. |
| Ref | Expression |
|---|---|
| onnminsb.1 |
|
| Ref | Expression |
|---|---|
| onnminsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onnminsb.1 |
. . . . 5
| |
| 2 | 1 | elrab 3363 |
. . . 4
|
| 3 | ssrab2 3687 |
. . . . 5
| |
| 4 | onnmin 7003 |
. . . . 5
| |
| 5 | 3, 4 | mpan 706 |
. . . 4
|
| 6 | 2, 5 | sylbir 225 |
. . 3
|
| 7 | 6 | ex 450 |
. 2
|
| 8 | 7 | con2d 129 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
| This theorem is referenced by: onminex 7007 oawordeulem 7634 oeeulem 7681 nnawordex 7717 tcrank 8747 alephnbtwn 8894 cardaleph 8912 cardmin 9386 sltval2 31809 nosepeq 31835 nosupbnd2lem1 31861 |
| Copyright terms: Public domain | W3C validator |