MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onirri Structured version   Visualization version   Unicode version

Theorem onirri 5834
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onirri  |-  -.  A  e.  A

Proof of Theorem onirri
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onordi 5832 . 2  |-  Ord  A
3 ordirr 5741 . 2  |-  ( Ord 
A  ->  -.  A  e.  A )
42, 3ax-mp 5 1  |-  -.  A  e.  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    e. wcel 1990   Ord word 5722   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  onssnel2i  5838  onuninsuci  7040  oelim2  7675  omopthlem2  7736  harndom  8469  wfelirr  8688  carduni  8807  pm54.43  8826  alephle  8911  alephfp  8931  pwxpndom2  9487  onsucsuccmpi  32442  onint1  32448  finxpreclem5  33232  wepwsolem  37612
  Copyright terms: Public domain W3C validator