![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc2i | Structured version Visualization version Unicode version |
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elicc2i.1 |
![]() ![]() ![]() ![]() |
elicc2i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elicc2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elicc2i.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | elicc2 12238 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 708 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-icc 12182 |
This theorem is referenced by: 0elunit 12290 1elunit 12291 divelunit 12314 lincmb01cmp 12315 iccf1o 12316 sinbnd2 14912 cosbnd2 14913 rpnnen2lem12 14954 blcvx 22601 iirev 22728 iihalf1 22730 iihalf2 22732 elii1 22734 elii2 22735 iimulcl 22736 iccpnfhmeo 22744 xrhmeo 22745 oprpiece1res2 22751 lebnumii 22765 htpycc 22779 pco0 22814 pcoval2 22816 pcocn 22817 pcohtpylem 22819 pcopt 22822 pcopt2 22823 pcoass 22824 pcorevlem 22826 vitalilem2 23378 vitali 23382 abelth2 24196 coseq00topi 24254 coseq0negpitopi 24255 sinq12ge0 24260 cosq14ge0 24263 cosordlem 24277 cosord 24278 cos11 24279 sinord 24280 recosf1o 24281 resinf1o 24282 efif1olem3 24290 argregt0 24356 argrege0 24357 argimgt0 24358 logimul 24360 cxpsqrtlem 24448 chordthmlem4 24562 acosbnd 24627 leibpi 24669 log2ub 24676 jensenlem2 24714 emcllem7 24728 emgt0 24733 harmonicbnd3 24734 harmoniclbnd 24735 harmonicubnd 24736 harmonicbnd4 24737 lgamgulmlem2 24756 logdivbnd 25245 pntpbnd2 25276 ttgcontlem1 25765 brbtwn2 25785 ax5seglem1 25808 ax5seglem2 25809 ax5seglem3 25811 ax5seglem5 25813 ax5seglem6 25814 ax5seglem9 25817 ax5seg 25818 axbtwnid 25819 axpaschlem 25820 axpasch 25821 axcontlem2 25845 axcontlem4 25847 axcontlem7 25850 stge0 29083 stle1 29084 strlem3a 29111 elunitrn 29943 elunitge0 29945 unitdivcld 29947 xrge0iifiso 29981 xrge0iifhom 29983 resconn 31228 snmlff 31311 sin2h 33399 cos2h 33400 poimirlem29 33438 poimirlem30 33439 poimirlem31 33440 poimirlem32 33441 lhe4.4ex1a 38528 fourierdlem40 40364 fourierdlem62 40385 fourierdlem78 40401 fourierdlem111 40434 sqwvfoura 40445 sqwvfourb 40446 |
Copyright terms: Public domain | W3C validator |