MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2or3 Structured version   Visualization version   Unicode version

Theorem ordtri2or3 5824
Description: A consequence of total ordering for ordinal classes. Similar to ordtri2or2 5823. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
ordtri2or3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B
) ) )

Proof of Theorem ordtri2or3
StepHypRef Expression
1 ordtri2or2 5823 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  \/  B  C_  A ) )
2 dfss 3589 . . 3  |-  ( A 
C_  B  <->  A  =  ( A  i^i  B ) )
3 sseqin2 3817 . . . 4  |-  ( B 
C_  A  <->  ( A  i^i  B )  =  B )
4 eqcom 2629 . . . 4  |-  ( ( A  i^i  B )  =  B  <->  B  =  ( A  i^i  B ) )
53, 4bitri 264 . . 3  |-  ( B 
C_  A  <->  B  =  ( A  i^i  B ) )
62, 5orbi12i 543 . 2  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B
) ) )
71, 6sylib 208 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    i^i cin 3573    C_ wss 3574   Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  ordelinel  5825  ordelinelOLD  5826  mreexexdOLD  16309
  Copyright terms: Public domain W3C validator