Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem1N Structured version   Visualization version   Unicode version

Theorem osumcllem1N 35242
Description: Lemma for osumclN 35253. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l  |-  .<_  =  ( le `  K )
osumcllem.j  |-  .\/  =  ( join `  K )
osumcllem.a  |-  A  =  ( Atoms `  K )
osumcllem.p  |-  .+  =  ( +P `  K
)
osumcllem.o  |-  ._|_  =  ( _|_P `  K
)
osumcllem.c  |-  C  =  ( PSubCl `  K )
osumcllem.m  |-  M  =  ( X  .+  {
p } )
osumcllem.u  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
Assertion
Ref Expression
osumcllem1N  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( U  i^i  M
)  =  M )

Proof of Theorem osumcllem1N
StepHypRef Expression
1 osumcllem.m . . 3  |-  M  =  ( X  .+  {
p } )
2 osumcllem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
3 osumcllem.p . . . . . . 7  |-  .+  =  ( +P `  K
)
42, 3sspadd1 35101 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( X  .+  Y
) )
54adantr 481 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  X  C_  ( X  .+  Y ) )
6 simpl1 1064 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  K  e.  HL )
72, 3paddssat 35100 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
87adantr 481 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( X  .+  Y
)  C_  A )
9 osumcllem.o . . . . . . . 8  |-  ._|_  =  ( _|_P `  K
)
102, 92polssN 35201 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A )  -> 
( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
116, 8, 10syl2anc 693 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
12 osumcllem.u . . . . . 6  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
1311, 12syl6sseqr 3652 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( X  .+  Y
)  C_  U )
145, 13sstrd 3613 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  X  C_  U )
15 simpr 477 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  p  e.  U )
1615snssd 4340 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  { p }  C_  U )
17 simpl2 1065 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  X  C_  A )
182, 9polssatN 35194 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A )  -> 
(  ._|_  `  ( X  .+  Y ) )  C_  A )
196, 8, 18syl2anc 693 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  (  ._|_  `  ( X 
.+  Y ) ) 
C_  A )
202, 9polssatN 35194 . . . . . . . 8  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  C_  A )
216, 19, 20syl2anc 693 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  C_  A )
2212, 21syl5eqss 3649 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  U  C_  A )
2316, 22sstrd 3613 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  { p }  C_  A )
24 eqid 2622 . . . . . . . 8  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
252, 24, 9polsubN 35193 . . . . . . 7  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  e.  ( PSubSp `  K ) )
266, 19, 25syl2anc 693 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  e.  ( PSubSp `  K )
)
2712, 26syl5eqel 2705 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  U  e.  ( PSubSp `  K ) )
282, 24, 3paddss 35131 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  { p }  C_  A  /\  U  e.  ( PSubSp `
 K ) ) )  ->  ( ( X  C_  U  /\  {
p }  C_  U
)  <->  ( X  .+  { p } )  C_  U ) )
296, 17, 23, 27, 28syl13anc 1328 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( ( X  C_  U  /\  { p }  C_  U )  <->  ( X  .+  { p } ) 
C_  U ) )
3014, 16, 29mpbi2and 956 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( X  .+  {
p } )  C_  U )
311, 30syl5eqss 3649 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  M  C_  U )
32 sseqin2 3817 . 2  |-  ( M 
C_  U  <->  ( U  i^i  M )  =  M )
3331, 32sylib 208 1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( U  i^i  M
)  =  M )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Atomscatm 34550   HLchlt 34637   PSubSpcpsubsp 34782   +Pcpadd 35081   _|_PcpolN 35188   PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-polarityN 35189
This theorem is referenced by:  osumcllem2N  35243  osumcllem9N  35250
  Copyright terms: Public domain W3C validator