| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolicc2lem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for ovolicc2 23290. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| ovolicc.1 |
|
| ovolicc.2 |
|
| ovolicc.3 |
|
| ovolicc2.4 |
|
| ovolicc2.5 |
|
| ovolicc2.6 |
|
| ovolicc2.7 |
|
| ovolicc2.8 |
|
| ovolicc2.9 |
|
| Ref | Expression |
|---|---|
| ovolicc2lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc2.8 |
. . . . . 6
| |
| 2 | 1 | ffvelrnda 6359 |
. . . . 5
|
| 3 | ovolicc2.5 |
. . . . . . 7
| |
| 4 | inss2 3834 |
. . . . . . 7
| |
| 5 | fss 6056 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancl 694 |
. . . . . 6
|
| 7 | fvco3 6275 |
. . . . . 6
| |
| 8 | 6, 7 | sylan 488 |
. . . . 5
|
| 9 | 2, 8 | syldan 487 |
. . . 4
|
| 10 | ovolicc2.9 |
. . . . . 6
| |
| 11 | 10 | ralrimiva 2966 |
. . . . 5
|
| 12 | fveq2 6191 |
. . . . . . . 8
| |
| 13 | 12 | fveq2d 6195 |
. . . . . . 7
|
| 14 | id 22 |
. . . . . . 7
| |
| 15 | 13, 14 | eqeq12d 2637 |
. . . . . 6
|
| 16 | 15 | rspccva 3308 |
. . . . 5
|
| 17 | 11, 16 | sylan 488 |
. . . 4
|
| 18 | 6 | adantr 481 |
. . . . . . . 8
|
| 19 | 18, 2 | ffvelrnd 6360 |
. . . . . . 7
|
| 20 | 1st2nd2 7205 |
. . . . . . 7
| |
| 21 | 19, 20 | syl 17 |
. . . . . 6
|
| 22 | 21 | fveq2d 6195 |
. . . . 5
|
| 23 | df-ov 6653 |
. . . . 5
| |
| 24 | 22, 23 | syl6eqr 2674 |
. . . 4
|
| 25 | 9, 17, 24 | 3eqtr3d 2664 |
. . 3
|
| 26 | 25 | eleq2d 2687 |
. 2
|
| 27 | xp1st 7198 |
. . . 4
| |
| 28 | 19, 27 | syl 17 |
. . 3
|
| 29 | xp2nd 7199 |
. . . 4
| |
| 30 | 19, 29 | syl 17 |
. . 3
|
| 31 | rexr 10085 |
. . . 4
| |
| 32 | rexr 10085 |
. . . 4
| |
| 33 | elioo2 12216 |
. . . 4
| |
| 34 | 31, 32, 33 | syl2an 494 |
. . 3
|
| 35 | 28, 30, 34 | syl2anc 693 |
. 2
|
| 36 | 26, 35 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ioo 12179 |
| This theorem is referenced by: ovolicc2lem2 23286 ovolicc2lem3 23287 ovolicc2lem4 23288 |
| Copyright terms: Public domain | W3C validator |