Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddass Structured version   Visualization version   Unicode version

Theorem paddass 35124
Description: Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddass.a  |-  A  =  ( Atoms `  K )
paddass.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddass  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )

Proof of Theorem paddass
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  K  e.  HL )
2 simpr3 1069 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Z  C_  A )
3 simpr2 1068 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Y  C_  A )
4 simpr1 1067 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  X  C_  A )
5 paddass.a . . . . 5  |-  A  =  ( Atoms `  K )
6 paddass.p . . . . 5  |-  .+  =  ( +P `  K
)
75, 6paddasslem18 35123 . . . 4  |-  ( ( K  e.  HL  /\  ( Z  C_  A  /\  Y  C_  A  /\  X  C_  A ) )  -> 
( Z  .+  ( Y  .+  X ) ) 
C_  ( ( Z 
.+  Y )  .+  X ) )
81, 2, 3, 4, 7syl13anc 1328 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  .+  ( Y  .+  X ) ) 
C_  ( ( Z 
.+  Y )  .+  X ) )
9 hllat 34650 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
105, 6paddcom 35099 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
119, 10syl3an1 1359 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
12113adant3r3 1276 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  Y
)  =  ( Y 
.+  X ) )
1312oveq1d 6665 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( ( Y  .+  X ) 
.+  Z ) )
145, 6paddssat 35100 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  A )  ->  ( Y  .+  X )  C_  A )
151, 3, 4, 14syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  X
)  C_  A )
165, 6paddcom 35099 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Y  .+  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Z  .+  ( Y  .+  X ) ) )
179, 16syl3an1 1359 . . . . 5  |-  ( ( K  e.  HL  /\  ( Y  .+  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Z  .+  ( Y  .+  X ) ) )
181, 15, 2, 17syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( Y  .+  X )  .+  Z
)  =  ( Z 
.+  ( Y  .+  X ) ) )
1913, 18eqtrd 2656 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( Z 
.+  ( Y  .+  X ) ) )
205, 6paddcom 35099 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
219, 20syl3an1 1359 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
22213adant3r1 1274 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  Z
)  =  ( Z 
.+  Y ) )
2322oveq2d 6666 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) )  =  ( X  .+  ( Z  .+  Y ) ) )
245, 6paddssat 35100 . . . . . 6  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  Y  C_  A )  ->  ( Z  .+  Y )  C_  A )
251, 2, 3, 24syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  .+  Y
)  C_  A )
265, 6paddcom 35099 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  ( Z  .+  Y )  C_  A )  ->  ( X  .+  ( Z  .+  Y ) )  =  ( ( Z  .+  Y )  .+  X
) )
279, 26syl3an1 1359 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Z  .+  Y )  C_  A )  ->  ( X  .+  ( Z  .+  Y ) )  =  ( ( Z  .+  Y )  .+  X
) )
281, 4, 25, 27syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Z  .+  Y ) )  =  ( ( Z 
.+  Y )  .+  X ) )
2923, 28eqtrd 2656 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) )  =  ( ( Z 
.+  Y )  .+  X ) )
308, 19, 293sstr4d 3648 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  C_  ( X  .+  ( Y  .+  Z
) ) )
315, 6paddasslem18 35123 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) )
3230, 31eqssd 3620 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Latclat 17045   Atomscatm 34550   HLchlt 34637   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-padd 35082
This theorem is referenced by:  padd12N  35125  padd4N  35126  pmodl42N  35137  pmapjlln1  35141
  Copyright terms: Public domain W3C validator