| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem12 | Structured version Visualization version Unicode version | ||
| Description: Lemma for paddass 35124. The case when |
| Ref | Expression |
|---|---|
| paddasslem.l |
|
| paddasslem.j |
|
| paddasslem.a |
|
| paddasslem.p |
|
| Ref | Expression |
|---|---|
| paddasslem12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1l 1112 |
. . . 4
| |
| 2 | simpl21 1139 |
. . . . 5
| |
| 3 | simpl22 1140 |
. . . . 5
| |
| 4 | paddasslem.a |
. . . . . 6
| |
| 5 | paddasslem.p |
. . . . . 6
| |
| 6 | 4, 5 | paddssat 35100 |
. . . . 5
|
| 7 | 1, 2, 3, 6 | syl3anc 1326 |
. . . 4
|
| 8 | simpl23 1141 |
. . . 4
| |
| 9 | 1, 7, 8 | 3jca 1242 |
. . 3
|
| 10 | 4, 5 | sspadd2 35102 |
. . . 4
|
| 11 | 1, 3, 2, 10 | syl3anc 1326 |
. . 3
|
| 12 | 4, 5 | paddss1 35103 |
. . 3
|
| 13 | 9, 11, 12 | sylc 65 |
. 2
|
| 14 | hllat 34650 |
. . . 4
| |
| 15 | 1, 14 | syl 17 |
. . 3
|
| 16 | simprll 802 |
. . 3
| |
| 17 | simprlr 803 |
. . 3
| |
| 18 | simpl3l 1116 |
. . 3
| |
| 19 | eqid 2622 |
. . . 4
| |
| 20 | paddasslem.l |
. . . 4
| |
| 21 | 19, 4 | atbase 34576 |
. . . . 5
|
| 22 | 18, 21 | syl 17 |
. . . 4
|
| 23 | 3, 16 | sseldd 3604 |
. . . . . 6
|
| 24 | 19, 4 | atbase 34576 |
. . . . . 6
|
| 25 | 23, 24 | syl 17 |
. . . . 5
|
| 26 | simpl3r 1117 |
. . . . . 6
| |
| 27 | 19, 4 | atbase 34576 |
. . . . . 6
|
| 28 | 26, 27 | syl 17 |
. . . . 5
|
| 29 | paddasslem.j |
. . . . . 6
| |
| 30 | 19, 29 | latjcl 17051 |
. . . . 5
|
| 31 | 15, 25, 28, 30 | syl3anc 1326 |
. . . 4
|
| 32 | 8, 17 | sseldd 3604 |
. . . . . 6
|
| 33 | 19, 4 | atbase 34576 |
. . . . . 6
|
| 34 | 32, 33 | syl 17 |
. . . . 5
|
| 35 | 19, 29 | latjcl 17051 |
. . . . 5
|
| 36 | 15, 25, 34, 35 | syl3anc 1326 |
. . . 4
|
| 37 | simpl1r 1113 |
. . . . 5
| |
| 38 | simprrl 804 |
. . . . 5
| |
| 39 | oveq1 6657 |
. . . . . . 7
| |
| 40 | 39 | breq2d 4665 |
. . . . . 6
|
| 41 | 40 | biimpa 501 |
. . . . 5
|
| 42 | 37, 38, 41 | syl2anc 693 |
. . . 4
|
| 43 | 19, 20, 29 | latlej1 17060 |
. . . . . 6
|
| 44 | 15, 25, 34, 43 | syl3anc 1326 |
. . . . 5
|
| 45 | simprrr 805 |
. . . . 5
| |
| 46 | 19, 20, 29 | latjle12 17062 |
. . . . . 6
|
| 47 | 15, 25, 28, 36, 46 | syl13anc 1328 |
. . . . 5
|
| 48 | 44, 45, 47 | mpbi2and 956 |
. . . 4
|
| 49 | 19, 20, 15, 22, 31, 36, 42, 48 | lattrd 17058 |
. . 3
|
| 50 | 20, 29, 4, 5 | elpaddri 35088 |
. . 3
|
| 51 | 15, 3, 8, 16, 17, 18, 49, 50 | syl322anc 1354 |
. 2
|
| 52 | 13, 51 | sseldd 3604 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-padd 35082 |
| This theorem is referenced by: paddasslem14 35119 |
| Copyright terms: Public domain | W3C validator |