Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem16 Structured version   Visualization version   Unicode version

Theorem paddasslem16 35121
Description: Lemma for paddass 35124. Use elpaddn0 35086 to eliminate  x and  r from paddasslem15 35120. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem16  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  -> 
( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) )

Proof of Theorem paddasslem16
Dummy variables  p  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 34650 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 1082 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  ->  K  e.  Lat )
3 simp21 1094 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  ->  X  C_  A )
4 simp1 1061 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  ->  K  e.  HL )
5 simp22 1095 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  ->  Y  C_  A )
6 simp23 1096 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  ->  Z  C_  A )
7 paddasslem.a . . . . . 6  |-  A  =  ( Atoms `  K )
8 paddasslem.p . . . . . 6  |-  .+  =  ( +P `  K
)
97, 8paddssat 35100 . . . . 5  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  C_  A )
104, 5, 6, 9syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  -> 
( Y  .+  Z
)  C_  A )
11 simp3l 1089 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  -> 
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) ) )
12 paddasslem.l . . . . 5  |-  .<_  =  ( le `  K )
13 paddasslem.j . . . . 5  |-  .\/  =  ( join `  K )
1412, 13, 7, 8elpaddn0 35086 . . . 4  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  ( Y  .+  Z ) 
C_  A )  /\  ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) ) )  ->  (
p  e.  ( X 
.+  ( Y  .+  Z ) )  <->  ( p  e.  A  /\  E. x  e.  X  E. r  e.  ( Y  .+  Z
) p  .<_  ( x 
.\/  r ) ) ) )
152, 3, 10, 11, 14syl31anc 1329 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  -> 
( p  e.  ( X  .+  ( Y 
.+  Z ) )  <-> 
( p  e.  A  /\  E. x  e.  X  E. r  e.  ( Y  .+  Z ) p 
.<_  ( x  .\/  r
) ) ) )
16 simpr 477 . . . . . . . 8  |-  ( ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  ->  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )
1712, 13, 7, 8paddasslem15 35120 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
1816, 17syl3anl3 1376 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z
) )  /\  p  .<_  ( x  .\/  r
) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
19183exp2 1285 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  -> 
( p  e.  A  ->  ( ( x  e.  X  /\  r  e.  ( Y  .+  Z
) )  ->  (
p  .<_  ( x  .\/  r )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) ) ) )
2019imp 445 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  /\  p  e.  A
)  ->  ( (
x  e.  X  /\  r  e.  ( Y  .+  Z ) )  -> 
( p  .<_  ( x 
.\/  r )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) ) ) )
2120rexlimdvv 3037 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  /\  p  e.  A
)  ->  ( E. x  e.  X  E. r  e.  ( Y  .+  Z ) p  .<_  ( x  .\/  r )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
) )
2221expimpd 629 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  -> 
( ( p  e.  A  /\  E. x  e.  X  E. r  e.  ( Y  .+  Z
) p  .<_  ( x 
.\/  r ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
) )
2315, 22sylbid 230 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  -> 
( p  e.  ( X  .+  ( Y 
.+  Z ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
) )
2423ssrdv 3609 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  -> 
( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-padd 35082
This theorem is referenced by:  paddasslem18  35123
  Copyright terms: Public domain W3C validator