Proof of Theorem paddasslem5
| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4656 |
. . . . . . . . 9
   
     |
| 2 | 1 | biimpac 503 |
. . . . . . . 8
 
       |
| 3 | | eqid 2622 |
. . . . . . . . . 10
         |
| 4 | | paddasslem.l |
. . . . . . . . . 10
     |
| 5 | | simpll1 1100 |
. . . . . . . . . . 11
    
       
  |
| 6 | | hllat 34650 |
. . . . . . . . . . 11
   |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . 10
    
       
  |
| 8 | | simpll2 1101 |
. . . . . . . . . . 11
    
          |
| 9 | | paddasslem.a |
. . . . . . . . . . . 12
     |
| 10 | 3, 9 | atbase 34576 |
. . . . . . . . . . 11
       |
| 11 | 8, 10 | syl 17 |
. . . . . . . . . 10
    
              |
| 12 | | simp32 1098 |
. . . . . . . . . . . . 13
 

    |
| 13 | 12 | ad2antrr 762 |
. . . . . . . . . . . 12
    
          |
| 14 | 3, 9 | atbase 34576 |
. . . . . . . . . . . 12
       |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . 11
    
              |
| 16 | | simp33 1099 |
. . . . . . . . . . . . 13
 

    |
| 17 | 16 | ad2antrr 762 |
. . . . . . . . . . . 12
    
          |
| 18 | 3, 9 | atbase 34576 |
. . . . . . . . . . . 12
       |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . 11
    
              |
| 20 | | paddasslem.j |
. . . . . . . . . . . 12
     |
| 21 | 3, 20 | latjcl 17051 |
. . . . . . . . . . 11
 
         
       |
| 22 | 7, 15, 19, 21 | syl3anc 1326 |
. . . . . . . . . 10
    
                |
| 23 | | simp31 1097 |
. . . . . . . . . . . . 13
 

    |
| 24 | 23 | ad2antrr 762 |
. . . . . . . . . . . 12
    
       
  |
| 25 | 3, 9 | atbase 34576 |
. . . . . . . . . . . 12
       |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
    
       
      |
| 27 | 3, 20 | latjcl 17051 |
. . . . . . . . . . 11
 
         
       |
| 28 | 7, 26, 15, 27 | syl3anc 1326 |
. . . . . . . . . 10
    
                |
| 29 | | simplr 792 |
. . . . . . . . . 10
    
            |
| 30 | 4, 20, 9 | hlatlej2 34662 |
. . . . . . . . . . . 12
 

    |
| 31 | 5, 24, 13, 30 | syl3anc 1326 |
. . . . . . . . . . 11
    
            |
| 32 | | simpr 477 |
. . . . . . . . . . 11
    
            |
| 33 | 3, 4, 20 | latjle12 17062 |
. . . . . . . . . . . . 13
      
    
         
           |
| 34 | 33 | biimpd 219 |
. . . . . . . . . . . 12
      
    
         
           |
| 35 | 7, 15, 19, 28, 34 | syl13anc 1328 |
. . . . . . . . . . 11
    
          
           |
| 36 | 31, 32, 35 | mp2and 715 |
. . . . . . . . . 10
    
              |
| 37 | 3, 4, 7, 11, 22, 28, 29, 36 | lattrd 17058 |
. . . . . . . . 9
    
            |
| 38 | 37 | ex 450 |
. . . . . . . 8
   
             |
| 39 | 2, 38 | syl5 34 |
. . . . . . 7
   
        

     |
| 40 | 39 | expdimp 453 |
. . . . . 6
    
              |
| 41 | 40 | necon3bd 2808 |
. . . . 5
    
         
    |
| 42 | 41 | exp31 630 |
. . . 4
 

        
       |
| 43 | 42 | com23 86 |
. . 3
 

        
       |
| 44 | 43 | com24 95 |
. 2
 

  
             |
| 45 | 44 | 3imp2 1282 |
1
   
  
          |