Proof of Theorem paddasslem5
Step | Hyp | Ref
| Expression |
1 | | breq1 4656 |
. . . . . . . . 9
   
     |
2 | 1 | biimpac 503 |
. . . . . . . 8
 
       |
3 | | eqid 2622 |
. . . . . . . . . 10
         |
4 | | paddasslem.l |
. . . . . . . . . 10
     |
5 | | simpll1 1100 |
. . . . . . . . . . 11
    
       
  |
6 | | hllat 34650 |
. . . . . . . . . . 11
   |
7 | 5, 6 | syl 17 |
. . . . . . . . . 10
    
       
  |
8 | | simpll2 1101 |
. . . . . . . . . . 11
    
          |
9 | | paddasslem.a |
. . . . . . . . . . . 12
     |
10 | 3, 9 | atbase 34576 |
. . . . . . . . . . 11
       |
11 | 8, 10 | syl 17 |
. . . . . . . . . 10
    
              |
12 | | simp32 1098 |
. . . . . . . . . . . . 13
 

    |
13 | 12 | ad2antrr 762 |
. . . . . . . . . . . 12
    
          |
14 | 3, 9 | atbase 34576 |
. . . . . . . . . . . 12
       |
15 | 13, 14 | syl 17 |
. . . . . . . . . . 11
    
              |
16 | | simp33 1099 |
. . . . . . . . . . . . 13
 

    |
17 | 16 | ad2antrr 762 |
. . . . . . . . . . . 12
    
          |
18 | 3, 9 | atbase 34576 |
. . . . . . . . . . . 12
       |
19 | 17, 18 | syl 17 |
. . . . . . . . . . 11
    
              |
20 | | paddasslem.j |
. . . . . . . . . . . 12
     |
21 | 3, 20 | latjcl 17051 |
. . . . . . . . . . 11
 
         
       |
22 | 7, 15, 19, 21 | syl3anc 1326 |
. . . . . . . . . 10
    
                |
23 | | simp31 1097 |
. . . . . . . . . . . . 13
 

    |
24 | 23 | ad2antrr 762 |
. . . . . . . . . . . 12
    
       
  |
25 | 3, 9 | atbase 34576 |
. . . . . . . . . . . 12
       |
26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
    
       
      |
27 | 3, 20 | latjcl 17051 |
. . . . . . . . . . 11
 
         
       |
28 | 7, 26, 15, 27 | syl3anc 1326 |
. . . . . . . . . 10
    
                |
29 | | simplr 792 |
. . . . . . . . . 10
    
            |
30 | 4, 20, 9 | hlatlej2 34662 |
. . . . . . . . . . . 12
 

    |
31 | 5, 24, 13, 30 | syl3anc 1326 |
. . . . . . . . . . 11
    
            |
32 | | simpr 477 |
. . . . . . . . . . 11
    
            |
33 | 3, 4, 20 | latjle12 17062 |
. . . . . . . . . . . . 13
      
    
         
           |
34 | 33 | biimpd 219 |
. . . . . . . . . . . 12
      
    
         
           |
35 | 7, 15, 19, 28, 34 | syl13anc 1328 |
. . . . . . . . . . 11
    
          
           |
36 | 31, 32, 35 | mp2and 715 |
. . . . . . . . . 10
    
              |
37 | 3, 4, 7, 11, 22, 28, 29, 36 | lattrd 17058 |
. . . . . . . . 9
    
            |
38 | 37 | ex 450 |
. . . . . . . 8
   
             |
39 | 2, 38 | syl5 34 |
. . . . . . 7
   
        

     |
40 | 39 | expdimp 453 |
. . . . . 6
    
              |
41 | 40 | necon3bd 2808 |
. . . . 5
    
         
    |
42 | 41 | exp31 630 |
. . . 4
 

        
       |
43 | 42 | com23 86 |
. . 3
 

        
       |
44 | 43 | com24 95 |
. 2
 

  
             |
45 | 44 | 3imp2 1282 |
1
   
  
          |