Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem1 Structured version   Visualization version   Unicode version

Theorem pmodlem1 35132
Description: Lemma for pmod1i 35134. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l  |-  .<_  =  ( le `  K )
pmodlem.j  |-  .\/  =  ( join `  K )
pmodlem.a  |-  A  =  ( Atoms `  K )
pmodlem.s  |-  S  =  ( PSubSp `  K )
pmodlem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pmodlem1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q 
.\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
Distinct variable groups:    q, p, r, A    .\/ , q, r    K, p, q, r    .<_ , q, r    .+ , p, q, r    S, p, q, r    X, p, q, r    Y, p, q, r    Z, p, q, r
Allowed substitution hints:    .\/ ( p)    .<_ ( p)

Proof of Theorem pmodlem1
StepHypRef Expression
1 simpl11 1136 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  K  e.  HL )
2 simpl12 1137 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  X  C_  A )
3 simpl13 1138 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  Y  C_  A )
4 ssinss1 3841 . . . . 5  |-  ( Y 
C_  A  ->  ( Y  i^i  Z )  C_  A )
53, 4syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  ( Y  i^i  Z
)  C_  A )
6 pmodlem.a . . . . 5  |-  A  =  ( Atoms `  K )
7 pmodlem.p . . . . 5  |-  .+  =  ( +P `  K
)
86, 7sspadd1 35101 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Y  i^i  Z )  C_  A )  ->  X  C_  ( X  .+  ( Y  i^i  Z ) ) )
91, 2, 5, 8syl3anc 1326 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  X  C_  ( X  .+  ( Y  i^i  Z
) ) )
10 simpr 477 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  p  =  q )
11 simpl31 1142 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  q  e.  X )
1210, 11eqeltrd 2701 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  p  e.  X )
139, 12sseldd 3604 . 2  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =  q )  ->  p  e.  ( X 
.+  ( Y  i^i  Z ) ) )
14 simpl11 1136 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  K  e.  HL )
15 hllat 34650 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
1614, 15syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  K  e.  Lat )
17 simpl12 1137 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  X  C_  A )
18 simpl13 1138 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  Y  C_  A )
1918, 4syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
( Y  i^i  Z
)  C_  A )
20 simpl31 1142 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
q  e.  X )
21 simpl32 1143 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  e.  Y )
22 simpl21 1139 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  Z  e.  S )
23 simpl22 1140 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  X  C_  Z )
24 simpl23 1141 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  e.  Z )
25 pmodlem.s . . . . . . . . . 10  |-  S  =  ( PSubSp `  K )
266, 25psubssat 35040 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Z  e.  S )  ->  Z  C_  A )
2714, 22, 26syl2anc 693 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  Z  C_  A )
2827, 24sseldd 3604 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  e.  A )
2918, 21sseldd 3604 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  e.  A )
3017, 20sseldd 3604 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
q  e.  A )
3128, 29, 303jca 1242 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
( p  e.  A  /\  r  e.  A  /\  q  e.  A
) )
32 simpr 477 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  =/=  q )
33 simpl33 1144 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  .<_  ( q  .\/  r ) )
34 pmodlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
35 pmodlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
3634, 35, 6hlatexch1 34681 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
p  .<_  ( q  .\/  r )  ->  r  .<_  ( q  .\/  p
) ) )
3736imp 445 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  /\  p  .<_  ( q  .\/  r
) )  ->  r  .<_  ( q  .\/  p
) )
3814, 31, 32, 33, 37syl31anc 1329 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  .<_  ( q  .\/  p ) )
39 simp31 1097 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  q  e.  X )
4039snssd 4340 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { q }  C_  X )
41 simp22 1095 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  X  C_  Z
)
4240, 41sstrd 3613 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { q }  C_  Z )
43 simp23 1096 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  p  e.  Z )
4443snssd 4340 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { p }  C_  Z )
45 simp11 1091 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  K  e.  HL )
46 simp12 1092 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  X  C_  A
)
4746, 39sseldd 3604 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  q  e.  A )
4847snssd 4340 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { q }  C_  A )
49 simp21 1094 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  Z  e.  S )
5045, 49, 26syl2anc 693 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  Z  C_  A
)
5150, 43sseldd 3604 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  p  e.  A )
5251snssd 4340 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  { p }  C_  A )
536, 25, 7paddss 35131 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( { q }  C_  A  /\  { p }  C_  A  /\  Z  e.  S ) )  -> 
( ( { q }  C_  Z  /\  { p }  C_  Z
)  <->  ( { q }  .+  { p } )  C_  Z
) )
5445, 48, 52, 49, 53syl13anc 1328 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  ( ( { q }  C_  Z  /\  { p }  C_  Z )  <->  ( {
q }  .+  {
p } )  C_  Z ) )
5542, 44, 54mpbi2and 956 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  ( {
q }  .+  {
p } )  C_  Z )
56 simp33 1099 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  .<_  ( q  .\/  p ) )
5745, 15syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  K  e.  Lat )
58 simp13 1093 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  Y  C_  A
)
59 simp32 1098 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  e.  Y )
6058, 59sseldd 3604 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  e.  A )
6134, 35, 6, 7elpadd2at2 35093 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( q  e.  A  /\  p  e.  A  /\  r  e.  A
) )  ->  (
r  e.  ( { q }  .+  {
p } )  <->  r  .<_  ( q  .\/  p ) ) )
6257, 47, 51, 60, 61syl13anc 1328 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  ( r  e.  ( { q } 
.+  { p }
)  <->  r  .<_  ( q 
.\/  p ) ) )
6356, 62mpbird 247 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  e.  ( { q }  .+  { p } ) )
6455, 63sseldd 3604 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  r  .<_  ( q 
.\/  p ) ) )  ->  r  e.  Z )
6514, 17, 18, 22, 23, 24, 20, 21, 38, 64syl333anc 1358 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  e.  Z )
6621, 65elind 3798 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  -> 
r  e.  ( Y  i^i  Z ) )
6734, 35, 6, 7elpaddri 35088 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  ( Y  i^i  Z ) 
C_  A )  /\  ( q  e.  X  /\  r  e.  ( Y  i^i  Z ) )  /\  ( p  e.  A  /\  p  .<_  ( q  .\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
6816, 17, 19, 20, 66, 28, 33, 67syl322anc 1354 . 2  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z
)  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q  .\/  r
) ) )  /\  p  =/=  q )  ->  p  e.  ( X  .+  ( Y  i^i  Z
) ) )
6913, 68pm2.61dane 2881 1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q 
.\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637   PSubSpcpsubsp 34782   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-padd 35082
This theorem is referenced by:  pmodlem2  35133
  Copyright terms: Public domain W3C validator