Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem2 Structured version   Visualization version   Unicode version

Theorem pmodlem2 35133
Description: Lemma for pmod1i 35134. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l  |-  .<_  =  ( le `  K )
pmodlem.j  |-  .\/  =  ( join `  K )
pmodlem.a  |-  A  =  ( Atoms `  K )
pmodlem.s  |-  S  =  ( PSubSp `  K )
pmodlem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pmodlem2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  .+  Y
)  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )

Proof of Theorem pmodlem2
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  X  =  (/) )
21oveq1d 6665 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( X  .+  Y )  =  (
(/)  .+  Y ) )
3 simpl1 1064 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  K  e.  HL )
4 simpl22 1140 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  Y  C_  A
)
5 pmodlem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
6 pmodlem.p . . . . . . 7  |-  .+  =  ( +P `  K
)
75, 6padd02 35098 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A )  -> 
( (/)  .+  Y )  =  Y )
83, 4, 7syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( (/)  .+  Y
)  =  Y )
92, 8eqtrd 2656 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( X  .+  Y )  =  Y )
109ineq1d 3813 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  =  ( Y  i^i  Z ) )
11 ssinss1 3841 . . . . 5  |-  ( Y 
C_  A  ->  ( Y  i^i  Z )  C_  A )
124, 11syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( Y  i^i  Z )  C_  A )
13 simpl21 1139 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  X  C_  A
)
145, 6sspadd2 35102 . . . 4  |-  ( ( K  e.  HL  /\  ( Y  i^i  Z ) 
C_  A  /\  X  C_  A )  ->  ( Y  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
153, 12, 13, 14syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( Y  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z
) ) )
1610, 15eqsstrd 3639 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  X  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
17 oveq2 6658 . . . . 5  |-  ( Y  =  (/)  ->  ( X 
.+  Y )  =  ( X  .+  (/) ) )
18 simp1 1061 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  K  e.  HL )
19 simp21 1094 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  X  C_  A )
205, 6padd01 35097 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  .+  (/) )  =  X )
2118, 19, 20syl2anc 693 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  ( X  .+  (/) )  =  X )
2217, 21sylan9eqr 2678 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( X  .+  Y )  =  X )
2322ineq1d 3813 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  =  ( X  i^i  Z ) )
24 inss1 3833 . . . 4  |-  ( X  i^i  Z )  C_  X
25 simpl1 1064 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  K  e.  HL )
26 simpl21 1139 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  X  C_  A
)
27 simpl22 1140 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  Y  C_  A
)
2827, 11syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( Y  i^i  Z )  C_  A )
295, 6sspadd1 35101 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Y  i^i  Z )  C_  A )  ->  X  C_  ( X  .+  ( Y  i^i  Z ) ) )
3025, 26, 28, 29syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  X  C_  ( X  .+  ( Y  i^i  Z ) ) )
3124, 30syl5ss 3614 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( X  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z
) ) )
3223, 31eqsstrd 3639 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  Y  =  (/) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
33 elin 3796 . . . 4  |-  ( p  e.  ( ( X 
.+  Y )  i^i 
Z )  <->  ( p  e.  ( X  .+  Y
)  /\  p  e.  Z ) )
34 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  K  e.  HL )
35 hllat 34650 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
3634, 35syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  K  e.  Lat )
37 simpl21 1139 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  X  C_  A )
38 simpl22 1140 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  ->  Y  C_  A )
39 simprl 794 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( X  =/=  (/)  /\  Y  =/=  (/) ) )
40 pmodlem.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
41 pmodlem.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
4240, 41, 5, 6elpaddn0 35086 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( p  e.  ( X  .+  Y )  <-> 
( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) ) ) )
4336, 37, 38, 39, 42syl31anc 1329 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( p  e.  ( X  .+  Y )  <-> 
( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) ) ) )
44 simpl1 1064 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  K  e.  HL )
45 simpl21 1139 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  X  C_  A )
46 simpl22 1140 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  Y  C_  A )
47 simpl23 1141 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  Z  e.  S )
48 simpl3 1066 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  X  C_  Z )
49 simpr1 1067 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  e.  Z )
50 simpr2l 1120 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  -> 
q  e.  X )
51 simpr2r 1121 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  -> 
r  e.  Y )
52 simpr3 1069 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  .<_  ( q  .\/  r ) )
53 pmodlem.s . . . . . . . . . . . . . . 15  |-  S  =  ( PSubSp `  K )
5440, 41, 5, 53, 6pmodlem1 35132 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( Z  e.  S  /\  X  C_  Z  /\  p  e.  Z )  /\  ( q  e.  X  /\  r  e.  Y  /\  p  .<_  ( q 
.\/  r ) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) )
5544, 45, 46, 47, 48, 49, 50, 51, 52, 54syl333anc 1358 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( p  e.  Z  /\  ( q  e.  X  /\  r  e.  Y )  /\  p  .<_  ( q  .\/  r
) ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z
) ) )
56553exp2 1285 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
p  e.  Z  -> 
( ( q  e.  X  /\  r  e.  Y )  ->  (
p  .<_  ( q  .\/  r )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) ) ) )
5756imp 445 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( (
q  e.  X  /\  r  e.  Y )  ->  ( p  .<_  ( q 
.\/  r )  ->  p  e.  ( X  .+  ( Y  i^i  Z
) ) ) ) )
5857rexlimdvv 3037 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
)  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
5958adantld 483 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  p  e.  Z
)  ->  ( (
p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6059adantrl 752 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( ( p  e.  A  /\  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6143, 60sylbid 230 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( ( X  =/=  (/)  /\  Y  =/=  (/) )  /\  p  e.  Z ) )  -> 
( p  e.  ( X  .+  Y )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6261exp32 631 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  =/=  (/)  /\  Y  =/=  (/) )  ->  (
p  e.  Z  -> 
( p  e.  ( X  .+  Y )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) ) ) )
6362com34 91 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  =/=  (/)  /\  Y  =/=  (/) )  ->  (
p  e.  ( X 
.+  Y )  -> 
( p  e.  Z  ->  p  e.  ( X 
.+  ( Y  i^i  Z ) ) ) ) ) )
6463imp4b 613 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( ( p  e.  ( X  .+  Y )  /\  p  e.  Z )  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6533, 64syl5bi 232 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( p  e.  ( ( X  .+  Y )  i^i  Z
)  ->  p  e.  ( X  .+  ( Y  i^i  Z ) ) ) )
6665ssrdv 3609 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( ( X 
.+  Y )  i^i 
Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
6716, 32, 66pm2.61da2ne 2882 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  e.  S )  /\  X  C_  Z )  ->  (
( X  .+  Y
)  i^i  Z )  C_  ( X  .+  ( Y  i^i  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637   PSubSpcpsubsp 34782   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-padd 35082
This theorem is referenced by:  pmod1i  35134
  Copyright terms: Public domain W3C validator