Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issiga Structured version   Visualization version   Unicode version

Theorem issiga 30174
Description: An alternative definition of the sigma-algebra, for a given base set. (Contributed by Thierry Arnoux, 19-Sep-2016.)
Assertion
Ref Expression
issiga  |-  ( S  e.  _V  ->  ( S  e.  (sigAlgebra `  O
)  <->  ( S  C_  ~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
Distinct variable groups:    x, O    x, S

Proof of Theorem issiga
Dummy variables  o 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . . . 4  |-  ( S  e.  (sigAlgebra `  O )  ->  O  e.  _V )
2 elex 3212 . . . 4  |-  ( S  e.  (sigAlgebra `  O )  ->  S  e.  _V )
31, 2jca 554 . . 3  |-  ( S  e.  (sigAlgebra `  O )  -> 
( O  e.  _V  /\  S  e.  _V )
)
43a1i 11 . 2  |-  ( S  e.  _V  ->  ( S  e.  (sigAlgebra `  O
)  ->  ( O  e.  _V  /\  S  e. 
_V ) ) )
5 simpr1 1067 . . . . 5  |-  ( ( S  C_  ~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x
)  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) )  ->  O  e.  S )
6 elex 3212 . . . . 5  |-  ( O  e.  S  ->  O  e.  _V )
75, 6syl 17 . . . 4  |-  ( ( S  C_  ~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x
)  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) )  ->  O  e.  _V )
87a1i 11 . . 3  |-  ( S  e.  _V  ->  (
( S  C_  ~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) )  ->  O  e.  _V )
)
98anc2ri 581 . 2  |-  ( S  e.  _V  ->  (
( S  C_  ~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) )  -> 
( O  e.  _V  /\  S  e.  _V )
) )
10 df-siga 30171 . . . 4  |- sigAlgebra  =  ( o  e.  _V  |->  { s  |  ( s 
C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
11 sigaex 30172 . . . 4  |-  { s  |  ( s  C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  e.  _V
12 pweq 4161 . . . . . . 7  |-  ( o  =  O  ->  ~P o  =  ~P O
)
1312sseq2d 3633 . . . . . 6  |-  ( o  =  O  ->  (
s  C_  ~P o  <->  s 
C_  ~P O ) )
14 sseq1 3626 . . . . . 6  |-  ( s  =  S  ->  (
s  C_  ~P O  <->  S 
C_  ~P O ) )
1513, 14sylan9bb 736 . . . . 5  |-  ( ( o  =  O  /\  s  =  S )  ->  ( s  C_  ~P o 
<->  S  C_  ~P O
) )
16 eleq12 2691 . . . . . 6  |-  ( ( o  =  O  /\  s  =  S )  ->  ( o  e.  s  <-> 
O  e.  S ) )
17 simpr 477 . . . . . . 7  |-  ( ( o  =  O  /\  s  =  S )  ->  s  =  S )
18 difeq1 3721 . . . . . . . . . 10  |-  ( o  =  O  ->  (
o  \  x )  =  ( O  \  x ) )
1918adantr 481 . . . . . . . . 9  |-  ( ( o  =  O  /\  s  =  S )  ->  ( o  \  x
)  =  ( O 
\  x ) )
2019eleq1d 2686 . . . . . . . 8  |-  ( ( o  =  O  /\  s  =  S )  ->  ( ( o  \  x )  e.  s  <-> 
( O  \  x
)  e.  s ) )
21 eleq2 2690 . . . . . . . . 9  |-  ( s  =  S  ->  (
( O  \  x
)  e.  s  <->  ( O  \  x )  e.  S
) )
2221adantl 482 . . . . . . . 8  |-  ( ( o  =  O  /\  s  =  S )  ->  ( ( O  \  x )  e.  s  <-> 
( O  \  x
)  e.  S ) )
2320, 22bitrd 268 . . . . . . 7  |-  ( ( o  =  O  /\  s  =  S )  ->  ( ( o  \  x )  e.  s  <-> 
( O  \  x
)  e.  S ) )
2417, 23raleqbidv 3152 . . . . . 6  |-  ( ( o  =  O  /\  s  =  S )  ->  ( A. x  e.  s  ( o  \  x )  e.  s  <->  A. x  e.  S  ( O  \  x
)  e.  S ) )
25 pweq 4161 . . . . . . . 8  |-  ( s  =  S  ->  ~P s  =  ~P S
)
26 eleq2 2690 . . . . . . . . 9  |-  ( s  =  S  ->  ( U. x  e.  s  <->  U. x  e.  S ) )
2726imbi2d 330 . . . . . . . 8  |-  ( s  =  S  ->  (
( x  ~<_  om  ->  U. x  e.  s )  <-> 
( x  ~<_  om  ->  U. x  e.  S ) ) )
2825, 27raleqbidv 3152 . . . . . . 7  |-  ( s  =  S  ->  ( A. x  e.  ~P  s ( x  ~<_  om 
->  U. x  e.  s )  <->  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) )
2928adantl 482 . . . . . 6  |-  ( ( o  =  O  /\  s  =  S )  ->  ( A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s )  <->  A. x  e.  ~P  S ( x  ~<_  om  ->  U. x  e.  S ) ) )
3016, 24, 293anbi123d 1399 . . . . 5  |-  ( ( o  =  O  /\  s  =  S )  ->  ( ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) )  <->  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) )
3115, 30anbi12d 747 . . . 4  |-  ( ( o  =  O  /\  s  =  S )  ->  ( ( s  C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) )  <->  ( S  C_ 
~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
3210, 11, 31abfmpel 29455 . . 3  |-  ( ( O  e.  _V  /\  S  e.  _V )  ->  ( S  e.  (sigAlgebra `  O )  <->  ( S  C_ 
~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
3332a1i 11 . 2  |-  ( S  e.  _V  ->  (
( O  e.  _V  /\  S  e.  _V )  ->  ( S  e.  (sigAlgebra `  O )  <->  ( S  C_ 
~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) ) ) )
344, 9, 33pm5.21ndd 369 1  |-  ( S  e.  _V  ->  ( S  e.  (sigAlgebra `  O
)  <->  ( S  C_  ~P O  /\  ( O  e.  S  /\  A. x  e.  S  ( O  \  x )  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   ` cfv 5888   omcom 7065    ~<_ cdom 7953  sigAlgebracsiga 30170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-siga 30171
This theorem is referenced by:  baselsiga  30178  sigasspw  30179  issgon  30186  isrnsigau  30190  dmvlsiga  30192  pwsiga  30193  prsiga  30194  sigainb  30199  insiga  30200  sigapildsys  30225  imambfm  30324  carsgsiga  30384
  Copyright terms: Public domain W3C validator