MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdom Structured version   Visualization version   Unicode version

Theorem pwdom 8112
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
pwdom  |-  ( A  ~<_  B  ->  ~P A  ~<_  ~P B )

Proof of Theorem pwdom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 pweq 4161 . . 3  |-  ( A  =  (/)  ->  ~P A  =  ~P (/) )
21breq1d 4663 . 2  |-  ( A  =  (/)  ->  ( ~P A  ~<_  ~P B  <->  ~P (/)  ~<_  ~P B
) )
3 reldom 7961 . . . . . . 7  |-  Rel  ~<_
43brrelexi 5158 . . . . . 6  |-  ( A  ~<_  B  ->  A  e.  _V )
5 0sdomg 8089 . . . . . 6  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
64, 5syl 17 . . . . 5  |-  ( A  ~<_  B  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
76biimpar 502 . . . 4  |-  ( ( A  ~<_  B  /\  A  =/=  (/) )  ->  (/)  ~<  A )
8 simpl 473 . . . 4  |-  ( ( A  ~<_  B  /\  A  =/=  (/) )  ->  A  ~<_  B )
9 fodomr 8111 . . . 4  |-  ( (
(/)  ~<  A  /\  A  ~<_  B )  ->  E. f 
f : B -onto-> A
)
107, 8, 9syl2anc 693 . . 3  |-  ( ( A  ~<_  B  /\  A  =/=  (/) )  ->  E. f 
f : B -onto-> A
)
11 vex 3203 . . . . 5  |-  f  e. 
_V
12 fopwdom 8068 . . . . 5  |-  ( ( f  e.  _V  /\  f : B -onto-> A )  ->  ~P A  ~<_  ~P B )
1311, 12mpan 706 . . . 4  |-  ( f : B -onto-> A  ->  ~P A  ~<_  ~P B
)
1413exlimiv 1858 . . 3  |-  ( E. f  f : B -onto-> A  ->  ~P A  ~<_  ~P B )
1510, 14syl 17 . 2  |-  ( ( A  ~<_  B  /\  A  =/=  (/) )  ->  ~P A  ~<_  ~P B )
163brrelex2i 5159 . . . 4  |-  ( A  ~<_  B  ->  B  e.  _V )
17 pwexg 4850 . . . 4  |-  ( B  e.  _V  ->  ~P B  e.  _V )
1816, 17syl 17 . . 3  |-  ( A  ~<_  B  ->  ~P B  e.  _V )
19 0ss 3972 . . . 4  |-  (/)  C_  B
20 sspwb 4917 . . . 4  |-  ( (/)  C_  B  <->  ~P (/)  C_  ~P B
)
2119, 20mpbi 220 . . 3  |-  ~P (/)  C_  ~P B
22 ssdomg 8001 . . 3  |-  ( ~P B  e.  _V  ->  ( ~P (/)  C_  ~P B  ->  ~P (/)  ~<_  ~P B
) )
2318, 21, 22mpisyl 21 . 2  |-  ( A  ~<_  B  ->  ~P (/)  ~<_  ~P B
)
242, 15, 23pm2.61ne 2879 1  |-  ( A  ~<_  B  ->  ~P A  ~<_  ~P B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   -onto->wfo 5886    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  cdalepw  9018  gchpwdom  9492  gchaclem  9500  2ndcredom  21253
  Copyright terms: Public domain W3C validator