MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdalepw Structured version   Visualization version   Unicode version

Theorem cdalepw 9018
Description: If  A is idempotent under cardinal sum and  B is dominated by the power set of  A, then so is the cardinal sum of  A and  B. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
cdalepw  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( A  +c  B
)  ~<_  ~P A )

Proof of Theorem cdalepw
StepHypRef Expression
1 oveq1 6657 . . 3  |-  ( A  =  (/)  ->  ( A  +c  B )  =  ( (/)  +c  B
) )
21breq1d 4663 . 2  |-  ( A  =  (/)  ->  ( ( A  +c  B )  ~<_  ~P A  <->  ( (/)  +c  B
)  ~<_  ~P A ) )
3 relen 7960 . . . . . . . . 9  |-  Rel  ~~
43brrelex2i 5159 . . . . . . . 8  |-  ( ( A  +c  A ) 
~~  A  ->  A  e.  _V )
54adantr 481 . . . . . . 7  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  ->  A  e.  _V )
6 canth2g 8114 . . . . . . 7  |-  ( A  e.  _V  ->  A  ~<  ~P A )
7 sdomdom 7983 . . . . . . 7  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
85, 6, 73syl 18 . . . . . 6  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  ->  A  ~<_  ~P A )
9 simpr 477 . . . . . 6  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  ->  B  ~<_  ~P A )
10 cdadom1 9008 . . . . . . 7  |-  ( A  ~<_  ~P A  ->  ( A  +c  B )  ~<_  ( ~P A  +c  B
) )
11 cdadom2 9009 . . . . . . 7  |-  ( B  ~<_  ~P A  ->  ( ~P A  +c  B
)  ~<_  ( ~P A  +c  ~P A ) )
12 domtr 8009 . . . . . . 7  |-  ( ( ( A  +c  B
)  ~<_  ( ~P A  +c  B )  /\  ( ~P A  +c  B
)  ~<_  ( ~P A  +c  ~P A ) )  ->  ( A  +c  B )  ~<_  ( ~P A  +c  ~P A
) )
1310, 11, 12syl2an 494 . . . . . 6  |-  ( ( A  ~<_  ~P A  /\  B  ~<_  ~P A )  ->  ( A  +c  B )  ~<_  ( ~P A  +c  ~P A ) )
148, 9, 13syl2anc 693 . . . . 5  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( A  +c  B
)  ~<_  ( ~P A  +c  ~P A ) )
15 pwcda1 9016 . . . . . 6  |-  ( A  e.  _V  ->  ( ~P A  +c  ~P A
)  ~~  ~P ( A  +c  1o ) )
165, 15syl 17 . . . . 5  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( ~P A  +c  ~P A )  ~~  ~P ( A  +c  1o ) )
17 domentr 8015 . . . . 5  |-  ( ( ( A  +c  B
)  ~<_  ( ~P A  +c  ~P A )  /\  ( ~P A  +c  ~P A )  ~~  ~P ( A  +c  1o ) )  ->  ( A  +c  B )  ~<_  ~P ( A  +c  1o ) )
1814, 16, 17syl2anc 693 . . . 4  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( A  +c  B
)  ~<_  ~P ( A  +c  1o ) )
1918adantr 481 . . 3  |-  ( ( ( ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  /\  A  =/=  (/) )  ->  ( A  +c  B )  ~<_  ~P ( A  +c  1o ) )
20 0sdomg 8089 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
215, 20syl 17 . . . . . . . 8  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( (/)  ~<  A  <->  A  =/=  (/) ) )
2221biimpar 502 . . . . . . 7  |-  ( ( ( ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  /\  A  =/=  (/) )  ->  (/)  ~<  A )
23 0sdom1dom 8158 . . . . . . 7  |-  ( (/)  ~<  A 
<->  1o  ~<_  A )
2422, 23sylib 208 . . . . . 6  |-  ( ( ( ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  /\  A  =/=  (/) )  ->  1o  ~<_  A )
25 cdadom2 9009 . . . . . 6  |-  ( 1o  ~<_  A  ->  ( A  +c  1o )  ~<_  ( A  +c  A ) )
2624, 25syl 17 . . . . 5  |-  ( ( ( ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  /\  A  =/=  (/) )  ->  ( A  +c  1o )  ~<_  ( A  +c  A ) )
27 simpll 790 . . . . 5  |-  ( ( ( ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  /\  A  =/=  (/) )  ->  ( A  +c  A )  ~~  A
)
28 domentr 8015 . . . . 5  |-  ( ( ( A  +c  1o )  ~<_  ( A  +c  A )  /\  ( A  +c  A )  ~~  A )  ->  ( A  +c  1o )  ~<_  A )
2926, 27, 28syl2anc 693 . . . 4  |-  ( ( ( ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  /\  A  =/=  (/) )  ->  ( A  +c  1o )  ~<_  A )
30 pwdom 8112 . . . 4  |-  ( ( A  +c  1o )  ~<_  A  ->  ~P ( A  +c  1o )  ~<_  ~P A )
3129, 30syl 17 . . 3  |-  ( ( ( ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  /\  A  =/=  (/) )  ->  ~P ( A  +c  1o )  ~<_  ~P A )
32 domtr 8009 . . 3  |-  ( ( ( A  +c  B
)  ~<_  ~P ( A  +c  1o )  /\  ~P ( A  +c  1o )  ~<_  ~P A )  ->  ( A  +c  B )  ~<_  ~P A )
3319, 31, 32syl2anc 693 . 2  |-  ( ( ( ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  /\  A  =/=  (/) )  ->  ( A  +c  B )  ~<_  ~P A
)
34 cdacomen 9003 . . 3  |-  ( (/)  +c  B )  ~~  ( B  +c  (/) )
35 reldom 7961 . . . . . . 7  |-  Rel  ~<_
3635brrelexi 5158 . . . . . 6  |-  ( B  ~<_  ~P A  ->  B  e.  _V )
3736adantl 482 . . . . 5  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  ->  B  e.  _V )
38 cda0en 9001 . . . . 5  |-  ( B  e.  _V  ->  ( B  +c  (/) )  ~~  B
)
39 domen1 8102 . . . . 5  |-  ( ( B  +c  (/) )  ~~  B  ->  ( ( B  +c  (/) )  ~<_  ~P A  <->  B  ~<_  ~P A ) )
4037, 38, 393syl 18 . . . 4  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( ( B  +c  (/) )  ~<_  ~P A  <->  B  ~<_  ~P A
) )
419, 40mpbird 247 . . 3  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( B  +c  (/) )  ~<_  ~P A )
42 endomtr 8014 . . 3  |-  ( ( ( (/)  +c  B
)  ~~  ( B  +c  (/) )  /\  ( B  +c  (/) )  ~<_  ~P A
)  ->  ( (/)  +c  B
)  ~<_  ~P A )
4334, 41, 42sylancr 695 . 2  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( (/)  +c  B )  ~<_  ~P A )
442, 33, 43pm2.61ne 2879 1  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( A  +c  B
)  ~<_  ~P A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653  (class class class)co 6650   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-cda 8990
This theorem is referenced by:  gchdomtri  9451
  Copyright terms: Public domain W3C validator