Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssfi Structured version   Visualization version   Unicode version

Theorem pwssfi 39211
Description: Every element of the power set of  A is finite if and only if  A is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwssfi  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  ~P A  C_ 
Fin ) )

Proof of Theorem pwssfi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6  |-  ( ( A  e.  Fin  /\  x  e.  ~P A
)  ->  A  e.  Fin )
2 elpwi 4168 . . . . . . 7  |-  ( x  e.  ~P A  ->  x  C_  A )
32adantl 482 . . . . . 6  |-  ( ( A  e.  Fin  /\  x  e.  ~P A
)  ->  x  C_  A
)
4 ssfi 8180 . . . . . 6  |-  ( ( A  e.  Fin  /\  x  C_  A )  ->  x  e.  Fin )
51, 3, 4syl2anc 693 . . . . 5  |-  ( ( A  e.  Fin  /\  x  e.  ~P A
)  ->  x  e.  Fin )
65ralrimiva 2966 . . . 4  |-  ( A  e.  Fin  ->  A. x  e.  ~P  A x  e. 
Fin )
7 dfss3 3592 . . . 4  |-  ( ~P A  C_  Fin  <->  A. x  e.  ~P  A x  e. 
Fin )
86, 7sylibr 224 . . 3  |-  ( A  e.  Fin  ->  ~P A  C_  Fin )
98a1i 11 . 2  |-  ( A  e.  V  ->  ( A  e.  Fin  ->  ~P A  C_  Fin ) )
10 pwidg 4173 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
1110adantr 481 . . . 4  |-  ( ( A  e.  V  /\  ~P A  C_  Fin )  ->  A  e.  ~P A
)
127biimpi 206 . . . . 5  |-  ( ~P A  C_  Fin  ->  A. x  e.  ~P  A x  e. 
Fin )
1312adantl 482 . . . 4  |-  ( ( A  e.  V  /\  ~P A  C_  Fin )  ->  A. x  e.  ~P  A x  e.  Fin )
14 eleq1 2689 . . . . 5  |-  ( x  =  A  ->  (
x  e.  Fin  <->  A  e.  Fin ) )
1514rspcva 3307 . . . 4  |-  ( ( A  e.  ~P A  /\  A. x  e.  ~P  A x  e.  Fin )  ->  A  e.  Fin )
1611, 13, 15syl2anc 693 . . 3  |-  ( ( A  e.  V  /\  ~P A  C_  Fin )  ->  A  e.  Fin )
1716ex 450 . 2  |-  ( A  e.  V  ->  ( ~P A  C_  Fin  ->  A  e.  Fin ) )
189, 17impbid 202 1  |-  ( A  e.  V  ->  ( A  e.  Fin  <->  ~P A  C_ 
Fin ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912    C_ wss 3574   ~Pcpw 4158   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-om 7066  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator