MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metucn Structured version   Visualization version   Unicode version

Theorem metucn 22376
Description: Uniform continuity in metric spaces. Compare the order of the quantifiers with metcn 22348. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
metucn.u  |-  U  =  (metUnif `  C )
metucn.v  |-  V  =  (metUnif `  D )
metucn.x  |-  ( ph  ->  X  =/=  (/) )
metucn.y  |-  ( ph  ->  Y  =/=  (/) )
metucn.c  |-  ( ph  ->  C  e.  (PsMet `  X ) )
metucn.d  |-  ( ph  ->  D  e.  (PsMet `  Y ) )
Assertion
Ref Expression
metucn  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( ( x C y )  < 
c  ->  ( ( F `  x ) D ( F `  y ) )  < 
d ) ) ) )
Distinct variable groups:    c, d, x, y, C    D, c,
d, x, y    F, c, d, x, y    x, U, y    x, V    X, c, d, x, y    Y, c, d, x, y    ph, c,
d, x, y
Allowed substitution hints:    U( c, d)    V( y, c, d)

Proof of Theorem metucn
Dummy variables  a 
e  u  v  b  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metucn.u . . . . . 6  |-  U  =  (metUnif `  C )
2 metucn.c . . . . . . 7  |-  ( ph  ->  C  e.  (PsMet `  X ) )
3 metuval 22354 . . . . . . 7  |-  ( C  e.  (PsMet `  X
)  ->  (metUnif `  C
)  =  ( ( X  X.  X )
filGen ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) ) )
42, 3syl 17 . . . . . 6  |-  ( ph  ->  (metUnif `  C )  =  ( ( X  X.  X ) filGen ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) ) )
51, 4syl5eq 2668 . . . . 5  |-  ( ph  ->  U  =  ( ( X  X.  X )
filGen ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) ) )
6 metucn.v . . . . . 6  |-  V  =  (metUnif `  D )
7 metucn.d . . . . . . 7  |-  ( ph  ->  D  e.  (PsMet `  Y ) )
8 metuval 22354 . . . . . . 7  |-  ( D  e.  (PsMet `  Y
)  ->  (metUnif `  D
)  =  ( ( Y  X.  Y )
filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) ) ) )
97, 8syl 17 . . . . . 6  |-  ( ph  ->  (metUnif `  D )  =  ( ( Y  X.  Y ) filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) ) )
106, 9syl5eq 2668 . . . . 5  |-  ( ph  ->  V  =  ( ( Y  X.  Y )
filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) ) ) )
115, 10oveq12d 6668 . . . 4  |-  ( ph  ->  ( U Cnu V )  =  ( ( ( X  X.  X ) filGen ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) ) Cnu ( ( Y  X.  Y ) filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) ) ) )
1211eleq2d 2687 . . 3  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  F  e.  ( ( ( X  X.  X ) filGen ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) ) Cnu ( ( Y  X.  Y ) filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) ) ) ) )
13 eqid 2622 . . . 4  |-  ( ( X  X.  X )
filGen ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) )  =  ( ( X  X.  X ) filGen ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) )
14 eqid 2622 . . . 4  |-  ( ( Y  X.  Y )
filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) ) )  =  ( ( Y  X.  Y ) filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) )
15 metucn.x . . . . 5  |-  ( ph  ->  X  =/=  (/) )
16 oveq2 6658 . . . . . . . . 9  |-  ( a  =  c  ->  (
0 [,) a )  =  ( 0 [,) c ) )
1716imaeq2d 5466 . . . . . . . 8  |-  ( a  =  c  ->  ( `' C " ( 0 [,) a ) )  =  ( `' C " ( 0 [,) c
) ) )
1817cbvmptv 4750 . . . . . . 7  |-  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  =  ( c  e.  RR+  |->  ( `' C " ( 0 [,) c ) ) )
1918rneqi 5352 . . . . . 6  |-  ran  (
a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  =  ran  (
c  e.  RR+  |->  ( `' C " ( 0 [,) c ) ) )
2019metust 22363 . . . . 5  |-  ( ( X  =/=  (/)  /\  C  e.  (PsMet `  X )
)  ->  ( ( X  X.  X ) filGen ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) )  e.  (UnifOn `  X ) )
2115, 2, 20syl2anc 693 . . . 4  |-  ( ph  ->  ( ( X  X.  X ) filGen ran  (
a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) )  e.  (UnifOn `  X ) )
22 metucn.y . . . . 5  |-  ( ph  ->  Y  =/=  (/) )
23 oveq2 6658 . . . . . . . . 9  |-  ( b  =  d  ->  (
0 [,) b )  =  ( 0 [,) d ) )
2423imaeq2d 5466 . . . . . . . 8  |-  ( b  =  d  ->  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) d
) ) )
2524cbvmptv 4750 . . . . . . 7  |-  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  =  ( d  e.  RR+  |->  ( `' D " ( 0 [,) d ) ) )
2625rneqi 5352 . . . . . 6  |-  ran  (
b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  =  ran  (
d  e.  RR+  |->  ( `' D " ( 0 [,) d ) ) )
2726metust 22363 . . . . 5  |-  ( ( Y  =/=  (/)  /\  D  e.  (PsMet `  Y )
)  ->  ( ( Y  X.  Y ) filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) )  e.  (UnifOn `  Y ) )
2822, 7, 27syl2anc 693 . . . 4  |-  ( ph  ->  ( ( Y  X.  Y ) filGen ran  (
b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) )  e.  (UnifOn `  Y ) )
29 oveq2 6658 . . . . . . . . 9  |-  ( a  =  e  ->  (
0 [,) a )  =  ( 0 [,) e ) )
3029imaeq2d 5466 . . . . . . . 8  |-  ( a  =  e  ->  ( `' C " ( 0 [,) a ) )  =  ( `' C " ( 0 [,) e
) ) )
3130cbvmptv 4750 . . . . . . 7  |-  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  =  ( e  e.  RR+  |->  ( `' C " ( 0 [,) e ) ) )
3231rneqi 5352 . . . . . 6  |-  ran  (
a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  =  ran  (
e  e.  RR+  |->  ( `' C " ( 0 [,) e ) ) )
3332metustfbas 22362 . . . . 5  |-  ( ( X  =/=  (/)  /\  C  e.  (PsMet `  X )
)  ->  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  e.  ( fBas `  ( X  X.  X
) ) )
3415, 2, 33syl2anc 693 . . . 4  |-  ( ph  ->  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) )  e.  ( fBas `  ( X  X.  X ) ) )
35 oveq2 6658 . . . . . . . . 9  |-  ( b  =  f  ->  (
0 [,) b )  =  ( 0 [,) f ) )
3635imaeq2d 5466 . . . . . . . 8  |-  ( b  =  f  ->  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) f
) ) )
3736cbvmptv 4750 . . . . . . 7  |-  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  =  ( f  e.  RR+  |->  ( `' D " ( 0 [,) f ) ) )
3837rneqi 5352 . . . . . 6  |-  ran  (
b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  =  ran  (
f  e.  RR+  |->  ( `' D " ( 0 [,) f ) ) )
3938metustfbas 22362 . . . . 5  |-  ( ( Y  =/=  (/)  /\  D  e.  (PsMet `  Y )
)  ->  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  e.  ( fBas `  ( Y  X.  Y
) ) )
4022, 7, 39syl2anc 693 . . . 4  |-  ( ph  ->  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) )  e.  ( fBas `  ( Y  X.  Y ) ) )
4113, 14, 21, 28, 34, 40isucn2 22083 . . 3  |-  ( ph  ->  ( F  e.  ( ( ( X  X.  X ) filGen ran  (
a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) ) Cnu ( ( Y  X.  Y ) filGen ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) ) )  <->  ( F : X --> Y  /\  A. v  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) E. u  e. 
ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) ) ) ) )
4212, 41bitrd 268 . 2  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. v  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) E. u  e. 
ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) ) ) ) )
43 eqid 2622 . . . . . . . . . 10  |-  ( `' D " ( 0 [,) d ) )  =  ( `' D " ( 0 [,) d
) )
44 oveq2 6658 . . . . . . . . . . . . 13  |-  ( f  =  d  ->  (
0 [,) f )  =  ( 0 [,) d ) )
4544imaeq2d 5466 . . . . . . . . . . . 12  |-  ( f  =  d  ->  ( `' D " ( 0 [,) f ) )  =  ( `' D " ( 0 [,) d
) ) )
4645eqeq2d 2632 . . . . . . . . . . 11  |-  ( f  =  d  ->  (
( `' D "
( 0 [,) d
) )  =  ( `' D " ( 0 [,) f ) )  <-> 
( `' D "
( 0 [,) d
) )  =  ( `' D " ( 0 [,) d ) ) ) )
4746rspcev 3309 . . . . . . . . . 10  |-  ( ( d  e.  RR+  /\  ( `' D " ( 0 [,) d ) )  =  ( `' D " ( 0 [,) d
) ) )  ->  E. f  e.  RR+  ( `' D " ( 0 [,) d ) )  =  ( `' D " ( 0 [,) f
) ) )
4843, 47mpan2 707 . . . . . . . . 9  |-  ( d  e.  RR+  ->  E. f  e.  RR+  ( `' D " ( 0 [,) d
) )  =  ( `' D " ( 0 [,) f ) ) )
4948adantl 482 . . . . . . . 8  |-  ( (
ph  /\  d  e.  RR+ )  ->  E. f  e.  RR+  ( `' D " ( 0 [,) d
) )  =  ( `' D " ( 0 [,) f ) ) )
5038metustel 22355 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  Y
)  ->  ( ( `' D " ( 0 [,) d ) )  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  <->  E. f  e.  RR+  ( `' D " ( 0 [,) d ) )  =  ( `' D " ( 0 [,) f
) ) ) )
517, 50syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( `' D " ( 0 [,) d
) )  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  <->  E. f  e.  RR+  ( `' D " ( 0 [,) d ) )  =  ( `' D " ( 0 [,) f
) ) ) )
5251adantr 481 . . . . . . . 8  |-  ( (
ph  /\  d  e.  RR+ )  ->  ( ( `' D " ( 0 [,) d ) )  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  <->  E. f  e.  RR+  ( `' D " ( 0 [,) d ) )  =  ( `' D " ( 0 [,) f
) ) ) )
5349, 52mpbird 247 . . . . . . 7  |-  ( (
ph  /\  d  e.  RR+ )  ->  ( `' D " ( 0 [,) d ) )  e. 
ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) ) )
5426metustel 22355 . . . . . . . 8  |-  ( D  e.  (PsMet `  Y
)  ->  ( v  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) )  <->  E. d  e.  RR+  v  =  ( `' D " ( 0 [,) d ) ) ) )
557, 54syl 17 . . . . . . 7  |-  ( ph  ->  ( v  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )  <->  E. d  e.  RR+  v  =  ( `' D " ( 0 [,) d ) ) ) )
56 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  v  =  ( `' D " ( 0 [,) d ) ) )  ->  v  =  ( `' D " ( 0 [,) d ) ) )
5756breqd 4664 . . . . . . . . . 10  |-  ( (
ph  /\  v  =  ( `' D " ( 0 [,) d ) ) )  ->  ( ( F `  x )
v ( F `  y )  <->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) )
5857imbi2d 330 . . . . . . . . 9  |-  ( (
ph  /\  v  =  ( `' D " ( 0 [,) d ) ) )  ->  ( (
x u y  -> 
( F `  x
) v ( F `
 y ) )  <-> 
( x u y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) ) )
5958ralbidv 2986 . . . . . . . 8  |-  ( (
ph  /\  v  =  ( `' D " ( 0 [,) d ) ) )  ->  ( A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) )  <->  A. y  e.  X  ( x u y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) ) )
6059rexralbidv 3058 . . . . . . 7  |-  ( (
ph  /\  v  =  ( `' D " ( 0 [,) d ) ) )  ->  ( E. u  e.  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) )  <->  E. u  e.  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) ) )
6153, 55, 60ralxfr2d 4882 . . . . . 6  |-  ( ph  ->  ( A. v  e. 
ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) ) E. u  e.  ran  (
a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) )  <->  A. d  e.  RR+  E. u  e.  ran  (
a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) ) )
62 eqid 2622 . . . . . . . . . . 11  |-  ( `' C " ( 0 [,) c ) )  =  ( `' C " ( 0 [,) c
) )
63 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( e  =  c  ->  (
0 [,) e )  =  ( 0 [,) c ) )
6463imaeq2d 5466 . . . . . . . . . . . . 13  |-  ( e  =  c  ->  ( `' C " ( 0 [,) e ) )  =  ( `' C " ( 0 [,) c
) ) )
6564eqeq2d 2632 . . . . . . . . . . . 12  |-  ( e  =  c  ->  (
( `' C "
( 0 [,) c
) )  =  ( `' C " ( 0 [,) e ) )  <-> 
( `' C "
( 0 [,) c
) )  =  ( `' C " ( 0 [,) c ) ) ) )
6665rspcev 3309 . . . . . . . . . . 11  |-  ( ( c  e.  RR+  /\  ( `' C " ( 0 [,) c ) )  =  ( `' C " ( 0 [,) c
) ) )  ->  E. e  e.  RR+  ( `' C " ( 0 [,) c ) )  =  ( `' C " ( 0 [,) e
) ) )
6762, 66mpan2 707 . . . . . . . . . 10  |-  ( c  e.  RR+  ->  E. e  e.  RR+  ( `' C " ( 0 [,) c
) )  =  ( `' C " ( 0 [,) e ) ) )
6867adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  RR+ )  ->  E. e  e.  RR+  ( `' C " ( 0 [,) c
) )  =  ( `' C " ( 0 [,) e ) ) )
6932metustel 22355 . . . . . . . . . . 11  |-  ( C  e.  (PsMet `  X
)  ->  ( ( `' C " ( 0 [,) c ) )  e.  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  <->  E. e  e.  RR+  ( `' C " ( 0 [,) c ) )  =  ( `' C " ( 0 [,) e
) ) ) )
702, 69syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' C " ( 0 [,) c
) )  e.  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  <->  E. e  e.  RR+  ( `' C " ( 0 [,) c ) )  =  ( `' C " ( 0 [,) e
) ) ) )
7170adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  RR+ )  ->  ( ( `' C " ( 0 [,) c ) )  e.  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  <->  E. e  e.  RR+  ( `' C " ( 0 [,) c ) )  =  ( `' C " ( 0 [,) e
) ) ) )
7268, 71mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  c  e.  RR+ )  ->  ( `' C " ( 0 [,) c ) )  e. 
ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) )
7319metustel 22355 . . . . . . . . 9  |-  ( C  e.  (PsMet `  X
)  ->  ( u  e.  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) )  <->  E. c  e.  RR+  u  =  ( `' C " ( 0 [,) c ) ) ) )
742, 73syl 17 . . . . . . . 8  |-  ( ph  ->  ( u  e.  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) )  <->  E. c  e.  RR+  u  =  ( `' C " ( 0 [,) c ) ) ) )
75 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  u  =  ( `' C " ( 0 [,) c ) ) )  ->  u  =  ( `' C " ( 0 [,) c ) ) )
7675breqd 4664 . . . . . . . . . 10  |-  ( (
ph  /\  u  =  ( `' C " ( 0 [,) c ) ) )  ->  ( x u y  <->  x ( `' C " ( 0 [,) c ) ) y ) )
7776imbi1d 331 . . . . . . . . 9  |-  ( (
ph  /\  u  =  ( `' C " ( 0 [,) c ) ) )  ->  ( (
x u y  -> 
( F `  x
) ( `' D " ( 0 [,) d
) ) ( F `
 y ) )  <-> 
( x ( `' C " ( 0 [,) c ) ) y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) ) )
78772ralbidv 2989 . . . . . . . 8  |-  ( (
ph  /\  u  =  ( `' C " ( 0 [,) c ) ) )  ->  ( A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) ( `' D " ( 0 [,) d
) ) ( F `
 y ) )  <->  A. x  e.  X  A. y  e.  X  ( x ( `' C " ( 0 [,) c ) ) y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) ) )
7972, 74, 78rexxfr2d 4883 . . . . . . 7  |-  ( ph  ->  ( E. u  e. 
ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) ( `' D " ( 0 [,) d
) ) ( F `
 y ) )  <->  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( x
( `' C "
( 0 [,) c
) ) y  -> 
( F `  x
) ( `' D " ( 0 [,) d
) ) ( F `
 y ) ) ) )
8079ralbidv 2986 . . . . . 6  |-  ( ph  ->  ( A. d  e.  RR+  E. u  e.  ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) )  <->  A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( x ( `' C " ( 0 [,) c ) ) y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) ) )
8161, 80bitrd 268 . . . . 5  |-  ( ph  ->  ( A. v  e. 
ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) ) E. u  e.  ran  (
a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) )  <->  A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( x
( `' C "
( 0 [,) c
) ) y  -> 
( F `  x
) ( `' D " ( 0 [,) d
) ) ( F `
 y ) ) ) )
8281adantr 481 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. v  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) E. u  e. 
ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) )  <->  A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( x ( `' C " ( 0 [,) c ) ) y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) ) ) )
832ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  C  e.  (PsMet `  X
) )
84 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
c  e.  RR+ )
85 simprr 796 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
y  e.  X )
86 simprl 794 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
87 elbl4 22368 . . . . . . . . . 10  |-  ( ( ( C  e.  (PsMet `  X )  /\  c  e.  RR+ )  /\  (
y  e.  X  /\  x  e.  X )
)  ->  ( x  e.  ( y ( ball `  C ) c )  <-> 
x ( `' C " ( 0 [,) c
) ) y ) )
88 rpxr 11840 . . . . . . . . . . 11  |-  ( c  e.  RR+  ->  c  e. 
RR* )
89 elbl3ps 22196 . . . . . . . . . . 11  |-  ( ( ( C  e.  (PsMet `  X )  /\  c  e.  RR* )  /\  (
y  e.  X  /\  x  e.  X )
)  ->  ( x  e.  ( y ( ball `  C ) c )  <-> 
( x C y )  <  c ) )
9088, 89sylanl2 683 . . . . . . . . . 10  |-  ( ( ( C  e.  (PsMet `  X )  /\  c  e.  RR+ )  /\  (
y  e.  X  /\  x  e.  X )
)  ->  ( x  e.  ( y ( ball `  C ) c )  <-> 
( x C y )  <  c ) )
9187, 90bitr3d 270 . . . . . . . . 9  |-  ( ( ( C  e.  (PsMet `  X )  /\  c  e.  RR+ )  /\  (
y  e.  X  /\  x  e.  X )
)  ->  ( x
( `' C "
( 0 [,) c
) ) y  <->  ( x C y )  < 
c ) )
9283, 84, 85, 86, 91syl22anc 1327 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x ( `' C " ( 0 [,) c ) ) y  <->  ( x C y )  <  c
) )
937ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  D  e.  (PsMet `  Y
) )
94 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
d  e.  RR+ )
95 simp-4r 807 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  F : X --> Y )
9695, 85ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  y
)  e.  Y )
9795, 86ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  x
)  e.  Y )
98 elbl4 22368 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  Y )  /\  d  e.  RR+ )  /\  (
( F `  y
)  e.  Y  /\  ( F `  x )  e.  Y ) )  ->  ( ( F `
 x )  e.  ( ( F `  y ) ( ball `  D ) d )  <-> 
( F `  x
) ( `' D " ( 0 [,) d
) ) ( F `
 y ) ) )
99 rpxr 11840 . . . . . . . . . . 11  |-  ( d  e.  RR+  ->  d  e. 
RR* )
100 elbl3ps 22196 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  Y )  /\  d  e.  RR* )  /\  (
( F `  y
)  e.  Y  /\  ( F `  x )  e.  Y ) )  ->  ( ( F `
 x )  e.  ( ( F `  y ) ( ball `  D ) d )  <-> 
( ( F `  x ) D ( F `  y ) )  <  d ) )
10199, 100sylanl2 683 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  Y )  /\  d  e.  RR+ )  /\  (
( F `  y
)  e.  Y  /\  ( F `  x )  e.  Y ) )  ->  ( ( F `
 x )  e.  ( ( F `  y ) ( ball `  D ) d )  <-> 
( ( F `  x ) D ( F `  y ) )  <  d ) )
10298, 101bitr3d 270 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  Y )  /\  d  e.  RR+ )  /\  (
( F `  y
)  e.  Y  /\  ( F `  x )  e.  Y ) )  ->  ( ( F `
 x ) ( `' D " ( 0 [,) d ) ) ( F `  y
)  <->  ( ( F `
 x ) D ( F `  y
) )  <  d
) )
10393, 94, 96, 97, 102syl22anc 1327 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
)  <->  ( ( F `
 x ) D ( F `  y
) )  <  d
) )
10492, 103imbi12d 334 . . . . . . 7  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x ( `' C " ( 0 [,) c ) ) y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) )  <->  ( (
x C y )  <  c  ->  (
( F `  x
) D ( F `
 y ) )  <  d ) ) )
1051042ralbidva 2988 . . . . . 6  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  /\  c  e.  RR+ )  ->  ( A. x  e.  X  A. y  e.  X  ( x
( `' C "
( 0 [,) c
) ) y  -> 
( F `  x
) ( `' D " ( 0 [,) d
) ) ( F `
 y ) )  <->  A. x  e.  X  A. y  e.  X  ( ( x C y )  <  c  ->  ( ( F `  x ) D ( F `  y ) )  <  d ) ) )
106105rexbidva 3049 . . . . 5  |-  ( ( ( ph  /\  F : X --> Y )  /\  d  e.  RR+ )  -> 
( E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( x ( `' C " ( 0 [,) c ) ) y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) )  <->  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( ( x C y )  < 
c  ->  ( ( F `  x ) D ( F `  y ) )  < 
d ) ) )
107106ralbidva 2985 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( x ( `' C " ( 0 [,) c ) ) y  ->  ( F `  x ) ( `' D " ( 0 [,) d ) ) ( F `  y
) )  <->  A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( ( x C y )  <  c  ->  ( ( F `  x ) D ( F `  y ) )  <  d ) ) )
10882, 107bitrd 268 . . 3  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. v  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) ) E. u  e. 
ran  ( a  e.  RR+  |->  ( `' C " ( 0 [,) a
) ) ) A. x  e.  X  A. y  e.  X  (
x u y  -> 
( F `  x
) v ( F `
 y ) )  <->  A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( ( x C y )  < 
c  ->  ( ( F `  x ) D ( F `  y ) )  < 
d ) ) )
109108pm5.32da 673 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. v  e.  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) ) E. u  e.  ran  (
a  e.  RR+  |->  ( `' C " ( 0 [,) a ) ) ) A. x  e.  X  A. y  e.  X  ( x u y  ->  ( F `  x ) v ( F `  y ) ) )  <->  ( F : X --> Y  /\  A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( ( x C y )  < 
c  ->  ( ( F `  x ) D ( F `  y ) )  < 
d ) ) ) )
11042, 109bitrd 268 1  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. d  e.  RR+  E. c  e.  RR+  A. x  e.  X  A. y  e.  X  ( ( x C y )  < 
c  ->  ( ( F `  x ) D ( F `  y ) )  < 
d ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   RR*cxr 10073    < clt 10074   RR+crp 11832   [,)cico 12177  PsMetcpsmet 19730   ballcbl 19733   fBascfbas 19734   filGencfg 19735  metUnifcmetu 19737  UnifOncust 22003   Cnucucn 22079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-psmet 19738  df-bl 19741  df-fbas 19743  df-fg 19744  df-metu 19745  df-fil 21650  df-ust 22004  df-ucn 22080
This theorem is referenced by:  qqhucn  30036  heicant  33444
  Copyright terms: Public domain W3C validator