MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsuba Structured version   Visualization version   Unicode version

Theorem connsuba 21223
Description: Connectedness for a subspace. See connsub 21224. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsuba  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e. Conn  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
Distinct variable groups:    x, y, A    x, J, y    x, X, y

Proof of Theorem connsuba
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttopon 20965 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
2 dfconn2 21222 . . 3  |-  ( ( Jt  A )  e.  (TopOn `  A )  ->  (
( Jt  A )  e. Conn  <->  A. u  e.  ( Jt  A ) A. v  e.  ( Jt  A ) ( ( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  ->  ( u  u.  v )  =/= 
A ) ) )
31, 2syl 17 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e. Conn  <->  A. u  e.  ( Jt  A ) A. v  e.  ( Jt  A ) ( ( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  ->  ( u  u.  v )  =/= 
A ) ) )
4 vex 3203 . . . . 5  |-  x  e. 
_V
54inex1 4799 . . . 4  |-  ( x  i^i  A )  e. 
_V
65a1i 11 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  x  e.  J )  ->  (
x  i^i  A )  e.  _V )
7 toponmax 20730 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
87adantr 481 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  X  e.  J )
9 simpr 477 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  C_  X )
108, 9ssexd 4805 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  e.  _V )
11 elrest 16088 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  _V )  ->  (
u  e.  ( Jt  A )  <->  E. x  e.  J  u  =  ( x  i^i  A ) ) )
1210, 11syldan 487 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
u  e.  ( Jt  A )  <->  E. x  e.  J  u  =  ( x  i^i  A ) ) )
13 vex 3203 . . . . . 6  |-  y  e. 
_V
1413inex1 4799 . . . . 5  |-  ( y  i^i  A )  e. 
_V
1514a1i 11 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  y  e.  J )  ->  (
y  i^i  A )  e.  _V )
16 elrest 16088 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  _V )  ->  (
v  e.  ( Jt  A )  <->  E. y  e.  J  v  =  ( y  i^i  A ) ) )
1710, 16syldan 487 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
v  e.  ( Jt  A )  <->  E. y  e.  J  v  =  ( y  i^i  A ) ) )
1817adantr 481 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i 
A ) )  -> 
( v  e.  ( Jt  A )  <->  E. y  e.  J  v  =  ( y  i^i  A
) ) )
19 simplr 792 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  u  =  ( x  i^i 
A ) )
2019neeq1d 2853 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  =/=  (/)  <->  ( x  i^i  A )  =/=  (/) ) )
21 simpr 477 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  v  =  ( y  i^i 
A ) )
2221neeq1d 2853 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
v  =/=  (/)  <->  ( y  i^i  A )  =/=  (/) ) )
2319, 21ineq12d 3815 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  i^i  v )  =  ( ( x  i^i  A )  i^i  ( y  i^i  A
) ) )
24 inindir 3831 . . . . . . . 8  |-  ( ( x  i^i  y )  i^i  A )  =  ( ( x  i^i 
A )  i^i  (
y  i^i  A )
)
2523, 24syl6eqr 2674 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  i^i  v )  =  ( ( x  i^i  y )  i^i 
A ) )
2625eqeq1d 2624 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
( u  i^i  v
)  =  (/)  <->  ( (
x  i^i  y )  i^i  A )  =  (/) ) )
2720, 22, 263anbi123d 1399 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  <->  ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( x  i^i  y
)  i^i  A )  =  (/) ) ) )
2819, 21uneq12d 3768 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  u.  v )  =  ( ( x  i^i  A )  u.  ( y  i^i  A
) ) )
29 indir 3875 . . . . . . 7  |-  ( ( x  u.  y )  i^i  A )  =  ( ( x  i^i 
A )  u.  (
y  i^i  A )
)
3028, 29syl6eqr 2674 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  u.  v )  =  ( ( x  u.  y )  i^i 
A ) )
3130neeq1d 2853 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
( u  u.  v
)  =/=  A  <->  ( (
x  u.  y )  i^i  A )  =/= 
A ) )
3227, 31imbi12d 334 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
( ( u  =/=  (/)  /\  v  =/=  (/)  /\  (
u  i^i  v )  =  (/) )  ->  (
u  u.  v )  =/=  A )  <->  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
3315, 18, 32ralxfr2d 4882 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i 
A ) )  -> 
( A. v  e.  ( Jt  A ) ( ( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  ->  ( u  u.  v )  =/= 
A )  <->  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
346, 12, 33ralxfr2d 4882 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( A. u  e.  ( Jt  A ) A. v  e.  ( Jt  A ) ( ( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  ->  ( u  u.  v )  =/= 
A )  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
353, 34bitrd 268 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e. Conn  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ` cfv 5888  (class class class)co 6650   ↾t crest 16081  TopOnctopon 20715  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-conn 21215
This theorem is referenced by:  connsub  21224  nconnsubb  21226
  Copyright terms: Public domain W3C validator