MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimrest Structured version   Visualization version   Unicode version

Theorem flimrest 21787
Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
flimrest  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fLim  ( Ft  Y ) )  =  ( ( J  fLim  F )  i^i  Y ) )

Proof of Theorem flimrest
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  J  e.  (TopOn `  X )
)
2 filelss 21656 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  Y  C_  X )
323adant1 1079 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  C_  X )
4 resttopon 20965 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
51, 3, 4syl2anc 693 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
6 filfbas 21652 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
763ad2ant2 1083 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( fBas `  X
) )
8 simp3 1063 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  e.  F )
9 fbncp 21643 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
107, 8, 9syl2anc 693 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
11 simp2 1062 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( Fil `  X
) )
12 trfil3 21692 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  C_  X )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1311, 3, 12syl2anc 693 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1410, 13mpbird 247 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Ft  Y )  e.  ( Fil `  Y ) )
15 flimopn 21779 . . . . 5  |-  ( ( ( Jt  Y )  e.  (TopOn `  Y )  /\  ( Ft  Y )  e.  ( Fil `  Y ) )  ->  ( x  e.  ( ( Jt  Y ) 
fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
165, 14, 15syl2anc 693 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
17 simpll2 1101 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  F  e.  ( Fil `  X
) )
18 simpll3 1102 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  Y  e.  F )
19 elrestr 16089 . . . . . . . . . . 11  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F  /\  z  e.  F )  ->  (
z  i^i  Y )  e.  ( Ft  Y ) )
20193expia 1267 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  (
z  e.  F  -> 
( z  i^i  Y
)  e.  ( Ft  Y ) ) )
2117, 18, 20syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  e.  F  -> 
( z  i^i  Y
)  e.  ( Ft  Y ) ) )
22 trfilss 21693 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  ( Ft  Y )  C_  F
)
2317, 18, 22syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  ( Ft  Y )  C_  F
)
2423sseld 3602 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  ( Ft  Y )  ->  ( z  i^i  Y )  e.  F
) )
25 inss1 3833 . . . . . . . . . . . 12  |-  ( z  i^i  Y )  C_  z
2625a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  i^i  Y )  C_  z )
27 simpl1 1064 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  J  e.  (TopOn `  X )
)
28 toponss 20731 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  J )  ->  z  C_  X )
2927, 28sylan 488 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  z  C_  X )
30 filss 21657 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( Fil `  X )  /\  (
( z  i^i  Y
)  e.  F  /\  z  C_  X  /\  (
z  i^i  Y )  C_  z ) )  -> 
z  e.  F )
31303exp2 1285 . . . . . . . . . . . 12  |-  ( F  e.  ( Fil `  X
)  ->  ( (
z  i^i  Y )  e.  F  ->  ( z 
C_  X  ->  (
( z  i^i  Y
)  C_  z  ->  z  e.  F ) ) ) )
3231com24 95 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  X
)  ->  ( (
z  i^i  Y )  C_  z  ->  ( z  C_  X  ->  ( (
z  i^i  Y )  e.  F  ->  z  e.  F ) ) ) )
3317, 26, 29, 32syl3c 66 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  F  -> 
z  e.  F ) )
3424, 33syld 47 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( z  i^i  Y
)  e.  ( Ft  Y )  ->  z  e.  F ) )
3521, 34impbid 202 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  e.  F  <->  ( z  i^i  Y )  e.  ( Ft  Y ) ) )
3635imbi2d 330 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
( x  e.  z  ->  z  e.  F
)  <->  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
3736ralbidva 2985 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. z  e.  J  ( x  e.  z  ->  z  e.  F )  <->  A. z  e.  J  ( x  e.  z  ->  ( z  i^i  Y
)  e.  ( Ft  Y ) ) ) )
38 simpl2 1065 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  F  e.  ( Fil `  X
) )
393sselda 3603 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  x  e.  X )
40 flimopn 21779 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  F )  <->  ( x  e.  X  /\  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) ) )
4140baibd 948 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  X )  ->  (
x  e.  ( J 
fLim  F )  <->  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) )
4227, 38, 39, 41syl21anc 1325 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( J 
fLim  F )  <->  A. z  e.  J  ( x  e.  z  ->  z  e.  F ) ) )
43 vex 3203 . . . . . . . . 9  |-  z  e. 
_V
4443inex1 4799 . . . . . . . 8  |-  ( z  i^i  Y )  e. 
_V
4544a1i 11 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  e.  J )  ->  (
z  i^i  Y )  e.  _V )
46 simpl3 1066 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  Y  e.  F )
47 elrest 16088 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  F )  ->  (
y  e.  ( Jt  Y )  <->  E. z  e.  J  y  =  ( z  i^i  Y ) ) )
4827, 46, 47syl2anc 693 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
y  e.  ( Jt  Y )  <->  E. z  e.  J  y  =  ( z  i^i  Y ) ) )
49 eleq2 2690 . . . . . . . . 9  |-  ( y  =  ( z  i^i 
Y )  ->  (
x  e.  y  <->  x  e.  ( z  i^i  Y
) ) )
50 elin 3796 . . . . . . . . . . 11  |-  ( x  e.  ( z  i^i 
Y )  <->  ( x  e.  z  /\  x  e.  Y ) )
5150rbaib 947 . . . . . . . . . 10  |-  ( x  e.  Y  ->  (
x  e.  ( z  i^i  Y )  <->  x  e.  z ) )
5251adantl 482 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( z  i^i  Y )  <->  x  e.  z ) )
5349, 52sylan9bbr 737 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
x  e.  y  <->  x  e.  z ) )
54 eleq1 2689 . . . . . . . . 9  |-  ( y  =  ( z  i^i 
Y )  ->  (
y  e.  ( Ft  Y )  <->  ( z  i^i 
Y )  e.  ( Ft  Y ) ) )
5554adantl 482 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
y  e.  ( Ft  Y )  <->  ( z  i^i 
Y )  e.  ( Ft  Y ) ) )
5653, 55imbi12d 334 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( z  i^i  Y
) )  ->  (
( x  e.  y  ->  y  e.  ( Ft  Y ) )  <->  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
5745, 48, 56ralxfr2d 4882 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) )  <->  A. z  e.  J  ( x  e.  z  ->  ( z  i^i  Y )  e.  ( Ft  Y ) ) ) )
5837, 42, 573bitr4d 300 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( J 
fLim  F )  <->  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) )
5958pm5.32da 673 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <-> 
( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  y  e.  ( Ft  Y ) ) ) ) )
6016, 59bitr4d 271 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  ( x  e.  Y  /\  x  e.  ( J  fLim  F
) ) ) )
61 ancom 466 . . . 4  |-  ( ( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <->  ( x  e.  ( J  fLim  F
)  /\  x  e.  Y ) )
62 elin 3796 . . . 4  |-  ( x  e.  ( ( J 
fLim  F )  i^i  Y
)  <->  ( x  e.  ( J  fLim  F
)  /\  x  e.  Y ) )
6361, 62bitr4i 267 . . 3  |-  ( ( x  e.  Y  /\  x  e.  ( J  fLim  F ) )  <->  x  e.  ( ( J  fLim  F )  i^i  Y ) )
6460, 63syl6bb 276 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fLim  ( Ft  Y ) )  <->  x  e.  ( ( J  fLim  F )  i^i  Y ) ) )
6564eqrdv 2620 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fLim  ( Ft  Y ) )  =  ( ( J  fLim  F )  i^i  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   fBascfbas 19734  TopOnctopon 20715   Filcfil 21649    fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by:  cmetss  23113  minveclem4a  23201
  Copyright terms: Public domain W3C validator