| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxpmap | Structured version Visualization version Unicode version | ||
| Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
| Ref | Expression |
|---|---|
| ralxpmap.j |
|
| Ref | Expression |
|---|---|
| ralxpmap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . 3
| |
| 2 | snex 4908 |
. . 3
| |
| 3 | 1, 2 | unex 6956 |
. 2
|
| 4 | simpr 477 |
. . . . . . 7
| |
| 5 | elmapex 7878 |
. . . . . . . . 9
| |
| 6 | 5 | adantl 482 |
. . . . . . . 8
|
| 7 | elmapg 7870 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 17 |
. . . . . . 7
|
| 9 | 4, 8 | mpbid 222 |
. . . . . 6
|
| 10 | simpl 473 |
. . . . . 6
| |
| 11 | 9, 10 | ffvelrnd 6360 |
. . . . 5
|
| 12 | difss 3737 |
. . . . . . 7
| |
| 13 | fssres 6070 |
. . . . . . 7
| |
| 14 | 9, 12, 13 | sylancl 694 |
. . . . . 6
|
| 15 | 5 | simpld 475 |
. . . . . . . 8
|
| 16 | 15 | adantl 482 |
. . . . . . 7
|
| 17 | 6 | simprd 479 |
. . . . . . . 8
|
| 18 | difexg 4808 |
. . . . . . . 8
| |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
|
| 20 | 16, 19 | elmapd 7871 |
. . . . . 6
|
| 21 | 14, 20 | mpbird 247 |
. . . . 5
|
| 22 | ffn 6045 |
. . . . . . 7
| |
| 23 | 9, 22 | syl 17 |
. . . . . 6
|
| 24 | fnsnsplit 6450 |
. . . . . 6
| |
| 25 | 23, 10, 24 | syl2anc 693 |
. . . . 5
|
| 26 | opeq2 4403 |
. . . . . . . . 9
| |
| 27 | 26 | sneqd 4189 |
. . . . . . . 8
|
| 28 | 27 | uneq2d 3767 |
. . . . . . 7
|
| 29 | 28 | eqeq2d 2632 |
. . . . . 6
|
| 30 | uneq1 3760 |
. . . . . . 7
| |
| 31 | 30 | eqeq2d 2632 |
. . . . . 6
|
| 32 | 29, 31 | rspc2ev 3324 |
. . . . 5
|
| 33 | 11, 21, 25, 32 | syl3anc 1326 |
. . . 4
|
| 34 | 33 | ex 450 |
. . 3
|
| 35 | elmapi 7879 |
. . . . . . . . . 10
| |
| 36 | 35 | ad2antll 765 |
. . . . . . . . 9
|
| 37 | vex 3203 |
. . . . . . . . . . 11
| |
| 38 | f1osng 6177 |
. . . . . . . . . . . 12
| |
| 39 | f1of 6137 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . 11
|
| 41 | 37, 40 | mpan2 707 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 481 |
. . . . . . . . 9
|
| 43 | incom 3805 |
. . . . . . . . . . 11
| |
| 44 | disjdif 4040 |
. . . . . . . . . . 11
| |
| 45 | 43, 44 | eqtri 2644 |
. . . . . . . . . 10
|
| 46 | 45 | a1i 11 |
. . . . . . . . 9
|
| 47 | fun 6066 |
. . . . . . . . 9
| |
| 48 | 36, 42, 46, 47 | syl21anc 1325 |
. . . . . . . 8
|
| 49 | uncom 3757 |
. . . . . . . . . 10
| |
| 50 | simpl 473 |
. . . . . . . . . . . 12
| |
| 51 | 50 | snssd 4340 |
. . . . . . . . . . 11
|
| 52 | undif 4049 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | sylib 208 |
. . . . . . . . . 10
|
| 54 | 49, 53 | syl5eq 2668 |
. . . . . . . . 9
|
| 55 | 54 | feq2d 6031 |
. . . . . . . 8
|
| 56 | 48, 55 | mpbid 222 |
. . . . . . 7
|
| 57 | ssid 3624 |
. . . . . . . . 9
| |
| 58 | 57 | a1i 11 |
. . . . . . . 8
|
| 59 | snssi 4339 |
. . . . . . . . 9
| |
| 60 | 59 | ad2antrl 764 |
. . . . . . . 8
|
| 61 | 58, 60 | unssd 3789 |
. . . . . . 7
|
| 62 | 56, 61 | fssd 6057 |
. . . . . 6
|
| 63 | elmapex 7878 |
. . . . . . . . 9
| |
| 64 | 63 | ad2antll 765 |
. . . . . . . 8
|
| 65 | 64 | simpld 475 |
. . . . . . 7
|
| 66 | ssun1 3776 |
. . . . . . . 8
| |
| 67 | undif1 4043 |
. . . . . . . . 9
| |
| 68 | 64 | simprd 479 |
. . . . . . . . . 10
|
| 69 | snex 4908 |
. . . . . . . . . 10
| |
| 70 | unexg 6959 |
. . . . . . . . . 10
| |
| 71 | 68, 69, 70 | sylancl 694 |
. . . . . . . . 9
|
| 72 | 67, 71 | syl5eqelr 2706 |
. . . . . . . 8
|
| 73 | ssexg 4804 |
. . . . . . . 8
| |
| 74 | 66, 72, 73 | sylancr 695 |
. . . . . . 7
|
| 75 | 65, 74 | elmapd 7871 |
. . . . . 6
|
| 76 | 62, 75 | mpbird 247 |
. . . . 5
|
| 77 | eleq1 2689 |
. . . . 5
| |
| 78 | 76, 77 | syl5ibrcom 237 |
. . . 4
|
| 79 | 78 | rexlimdvva 3038 |
. . 3
|
| 80 | 34, 79 | impbid 202 |
. 2
|
| 81 | ralxpmap.j |
. . 3
| |
| 82 | 81 | adantl 482 |
. 2
|
| 83 | 3, 80, 82 | ralxpxfr2d 3327 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: islindf4 20177 |
| Copyright terms: Public domain | W3C validator |